{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Intro 3: Diagram i Python" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "I denna övning ska vi se på de verktyg Python erbjuder för att skapa grafer utgående från listor. När vi förstår verktygen kan vi ta listor från tabeller med statistik, och på så sätt visualisera dem. Vi börjar med att läsa in funktionspaketen som behövs, och dataset som ska användas i några övningar och exempel." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt # matplotlib.pyplot innehåller verktyg för att rita grafer och diagram.\n", "import pandas as pd # pandas låter oss läsa in en datafil och spara den som en variabel i python.\n", "import numpy as np " ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
YearWind (TWh)Oil (TWh)Nuclear (TWh)Hydropower (TWh)Biomass (TWh)Other renewables (TWh)Biofuels (TWh)Solar (TWh)Coal (TWh)Gas (TWh)
0180000005556000970
11810000058330001280
21820000061110001530
31830000063890002640
41840000069440003560
\n", "
" ], "text/plain": [ " Year Wind (TWh) Oil (TWh) Nuclear (TWh) Hydropower (TWh) \\\n", "0 1800 0 0 0 0 \n", "1 1810 0 0 0 0 \n", "2 1820 0 0 0 0 \n", "3 1830 0 0 0 0 \n", "4 1840 0 0 0 0 \n", "\n", " Biomass (TWh) Other renewables (TWh) Biofuels (TWh) Solar (TWh) \\\n", "0 5556 0 0 0 \n", "1 5833 0 0 0 \n", "2 6111 0 0 0 \n", "3 6389 0 0 0 \n", "4 6944 0 0 0 \n", "\n", " Coal (TWh) Gas (TWh) \n", "0 97 0 \n", "1 128 0 \n", "2 153 0 \n", "3 264 0 \n", "4 356 0 " ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "energi = pd.read_csv(\"files/global-energy-substitution.csv\")\n", "energi.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Diagram" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Vi ska se på några typer av diagram. Funktionspaketet matplotlib.pyplot låter oss rita diagram utgående från listor av värden. Vi ska lära oss använda funktionerna **plt.bar(), plt.scatter(), plt.hist()** och **plt.plot()**.\n", "\n", "Dessa kan rita diagram utgående från listor som du själv antecknar direkt i programmet, eller listor som är tagna ur en DataFrame importerad med **pandas**.\n", "\n", "Vi vill också snygga till diagramen lite med följande kommandon. Du kan se i kodcellerna nedan hur de används.\n", "\n", "````python\n", "fig = plt.figure(figsize=(8, 5)) # Startkommando (ej nödvändigt)\n", "\n", "plt.title(\"title\") # Rubrik\n", "plt.xlabel(\"label\") # x-axelns rubrik\n", "plt.ylabel(\"label\") # y-axelns rubrik\n", "\n", "plt.xlim(lower, upper) # välj vilket område som visas\n", "plt.ylim(lower, upper)\n", "\n", "plt.legend() # Förklaringsruta\n", "plt.grid() # Rutsystem\n", "\n", "plt.show() # Avslutande kommando\n", "````" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Stapeldiagram med plt.bar()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "För att rita ett stapeldiagram krävs två listor. En med staplarnas höjder (mätvärden, antal, frekvenser etc.) och en med staplarnas namn.\n", "\n", "Vi gör ett enkelt exempel med påhittade listor." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD6CAYAAAC4RRw1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAQ5UlEQVR4nO3de5BkZX3G8e8ji1xELmZHS1EYNIjlFXW8W95NEYliVdBIqQGj2dIqxaiJwTLRGCsGk5SXaMSsBjCIoIKKoBU1yIoIWRwuslwUFFeCEBi8oFiiXH7545xhm3Fm59K9M/vufj9VU3369Olzfu+ZM895+z3dPakqJEntucdKFyBJWhoDXJIaZYBLUqMMcElqlAEuSY1atZwbW716dY2Pjy/nJiWpeRdccMFNVTU2c/6yBvj4+DiTk5PLuUlJal6SH8023yEUSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1Kh5AzzJsUluTHLpwLz7JPlakqv62722bJmSpJkW0gM/HjhoxryjgDOran/gzP6+JGkZzRvgVXU28NMZsw8BPtFPfwJ48WjLkiTNZ6mfxLxfVV0PUFXXJ7nvXAsmWQOsAdhnn32WuDltz8aP+tJKlzAyG48+eKVL0DZki1/ErKq1VTVRVRNjY7/zUX5J0hItNcBvSHJ/gP72xtGVJElaiKUG+BeBw/vpw4HTRlOOJGmhFvI2wpOA84ADklyb5NXA0cDzk1wFPL+/L0laRvNexKyqw+Z46LkjrkWStAh+ElOSGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUqKECPMmbklyW5NIkJyXZeVSFSZI2b8kBnmRv4EhgoqoeCewAvGxUhUmSNm/YIZRVwC5JVgG7AtcNX5IkaSGWHOBV9WPgX4BrgOuBm6vqqzOXS7ImyWSSyampqaVXKkm6m2GGUPYCDgH2Ax4A3CvJK2YuV1Vrq2qiqibGxsaWXqkk6W6GGUJ5HvDDqpqqqtuAzwFPHU1ZkqT5DBPg1wBPTrJrkgDPBa4YTVmSpPkMMwa+HjgFuBDY0K9r7YjqkiTNY9UwT66qdwLvHFEtkqRF8JOYktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNWqo7wOXtGWNH/WllS5hZDYeffCin7O9t38+9sAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0aKsCT7JnklCTfTXJFkqeMqjBJ0uYN+x95Pgj8V1UdmuSewK4jqEmStABLDvAkuwPPAI4AqKrfAr8dTVmSpPkMM4TyYGAKOC7JRUk+nuReI6pLkjSPYQJ8FfA44JiqeizwK+ComQslWZNkMsnk1NTUEJuTJA0aJsCvBa6tqvX9/VPoAv1uqmptVU1U1cTY2NgQm5MkDVpygFfV/wH/m+SAftZzgctHUpUkaV7DvgvlDcCJ/TtQrgZeNXxJkqSFGCrAq+piYGI0pUiSFsNPYkpSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqOGDvAkOyS5KMkZoyhIkrQwo+iBvxG4YgTrkSQtwlABnuSBwMHAx0dTjiRpoYbtgX8AeCtw51wLJFmTZDLJ5NTU1JCbkyRNW3KAJ/kj4MaqumBzy1XV2qqaqKqJsbGxpW5OkjTDMD3wpwEvSrIROBl4TpJPjqQqSdK8lhzgVfW2qnpgVY0DLwO+XlWvGFllkqTN8n3gktSoVaNYSVWtA9aNYl2SpIWxBy5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjRvJ94Mth/KgvrXQJI7Px6IMX/Zxtpf1Labuk2dkDl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1askBnuRBSc5KckWSy5K8cZSFSZI2b5j/yHM78JaqujDJvYELknytqi4fUW2SpM1Ycg+8qq6vqgv76V8CVwB7j6owSdLmjWQMPMk48Fhg/SyPrUkymWRyampqFJuTJDGCAE+yG3Aq8BdV9YuZj1fV2qqaqKqJsbGxYTcnSeoNFeBJdqQL7xOr6nOjKUmStBDDvAslwH8AV1TV+0ZXkiRpIYbpgT8NeCXwnCQX9z8vGFFdkqR5LPlthFV1DpAR1iJJWgQ/iSlJjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0aKsCTHJTke0m+n+SoURUlSZrfkgM8yQ7AvwF/CDwcOCzJw0dVmCRp84bpgT8R+H5VXV1VvwVOBg4ZTVmSpPmkqpb2xORQ4KCqek1//5XAk6rq9TOWWwOs6e8eAHxv6eUui9XATStdxAqx7duv7bn9LbR936oamzlz1RArzCzzfudsUFVrgbVDbGdZJZmsqomVrmMl2Pbts+2wfbe/5bYPM4RyLfCggfsPBK4brhxJ0kINE+DfBvZPsl+SewIvA744mrIkSfNZ8hBKVd2e5PXAV4AdgGOr6rKRVbZymhnu2QJs+/Zre25/s21f8kVMSdLK8pOYktQoA1ySGrXdBHiS30tyVpJ3r3QtW8K23r5R2Vb3U5I7klyc5DtJLkzy1M0s+69JJpJ8fK5PTydZl2SrfWvdQHsv69v85iTz5lmSLyfZM8m5y1HnlrbdBDhwGPBuYN8ku690MVvAtt6+UdlW99Ovq+rAqnoM8DbgH2cu0H/9BVV1ZFVNVtVrquryUWx8et3LaLq9jwCeD7wAeOd8T6qqF1TVz6tq1hNckmE+GzO9jmXbF80EeJK392fbS/oz75MWu4qBn2FredGov7xra2rf1sz9tCC7Az8DSPKs/hXHp4ANSXZOclySDUkuSvLsfrldkpzc79dPA7tMryzJHyQ5r+/ZfzbJbv38jUnekeQc4CXL38xOVd1I92nv16ezPskjph/vX008PsmT+3ZclOTcJAf0jx/Rt+t04KtJdk3ymel90a9vol/2mCST/TH4roFtrMy+qKqt/gd4CnAesFN/fzXwgEWuYwxYB/zDkLWsGlGbdtga27fSP4P7ZWs+DlbquNnM+u8ALga+C9wMPL6f/yzgV8B+/f23AMf10w8DrgF2Bt5M91ZggEcDtwMT/T4+G7hX/9hfA+/opzcCb12h4+SWWeb9DLgf8CbgXf28+wNX9tN7TB9fwPOAU/vpI+g+mHif/v5fAv/eTz9yel/096eX2aE/jh69kvuilR74/YGbquo3AFV1U1VdB3ed+d7Tn1knkzwuyVeS/CDJa/tldqP7sq3dgRclmfVLt5K8OsmV/Rn7Y0k+3M8/Psn7kpwFvLc/Y08/9pIkl/bjcGf388aTfLPvsdw1HjmzN7SVte/QgeVuGaj3G31v5MokRyd5eZLz+x7cQwaef0zftquTPDPJsUmuSHL8wHoP6593aZL3Dm4vyd8nWU8X0it9HGyul/Xevv3nJ/n9fv6+Sc7se2xnJtlnYL/cddxspl2jMD2k8DDgIOA/k0y/yji/qn7YTz8dOAGgqr4L/Ah4KPAM4JP9/EuAS/rln0z3baPfSnIxcDiw78B2P73FWrR40+39DJt6wS8FPttP7w6ckuRS4P3AIwae+7Wq+mk//XS644SqupRN+wLgpUkuBC7qnz94DWH598VKnD2XcLbdja53cSXwEeCZA49tBF7XT7+fbmffm66ndWM/fxWwez+9Gvg+/XvgB9bzgH5d9wF2BL4JfLh/7HjgDDadvY8YeGwDsHc/vWd/uyuwcz+9PzDZTz+Lgd7QVta+QweWvWWg3p/TBedOwI/Z1LN5I/CBgeefTPcHdAjwC+BRdEN0FwAH9tu/pq97FfB14MX98wt46dZwHNT8vay399N/CpzRT58OHN5P/xnwhdmOmy38N3LLjPs3APftf4dnDMz/AvCcgfvfpOtxfwF49sD8C+l64C8ETppjmxuB1SuUCTPb+2DgJ9O/z4F2nQs8auD3cWQ/PQ5snPn33N8/bY59sV9/zOw1sL4jVnJfNNEDr6pbgMfTjXNNAZ9OcsTAItMf4d8ArK+qX1bVFHBrkj3pguU9SS4B/hvYm+6l1qAnAt+oqp9W1W1sOmtP+2xV3TFLed8Cjk/y53R/8NAF5MeSbOjXM3iWHuwNbU3tm8u3q+r66nq9PwC+OlDL+MByp1d3JG8AbqiqDVV1J3BZv9wTgHVVNVVVtwMn0vX6oHv5f+p8hSzTfoLN97JOGridfrXwFOBT/fQJdD24aXMdN1tMkofRHYs/meXhs4GX98s9FNiH7htCB+c/ki78AP4HeNrAq41d++dtNZKMAR+lC+HpTyaeDLwV2KOqpl/t7kHXCYEutOdyDl3PnXTv0nlUP393ug7YzUnuR/e/EFbU0Fdcl0v/R7AOWNcH4+F0Z0CA3/S3dw5MT99fRXdgjtGNC96WZCPduN+g+S5q/WqOul6b7kLawcDFSQ4E3kDXA3oMXS/01gWsZyXbd3tfJ/3L7nsOPDZze4O1rJplublqvH0z2791oSG3pfdTkv3oxkCfUFU/64eABpepOaaZY/6sv+8tYJd+iAO63/XhVXXHplGUu3wE+Gi/726n60H+JskxwHH9ye1i4HyAqprqT5InJdmpX8ff0L0KWknT7d2Rrh0nAO8bePwU4IN07zia9k/AJ5K8me4V4Fw+0i93Cd1J/BLg5qq6KslFdJ2Sq+k6byuqiQBPd7X4zqq6qp91IN3Y3ULtQfcy+rZ0V933nWWZ84H3J9kL+CXwx9x9nHqu2h5SVeuB9UleSPcNjXsA11bVnUkOZ1PPfK51rHT7NtL1bD9DNwSy4yK2vVDrgQ8mWU13sekw4EOLWcEy7afZelnrBh7/E+Do/va8ft65dF/mdgLdSeKcRdQ0ElU16zFWVesYqL+qbmWW3mdV/ZquDbOt4+t0r6Bmzh9fSq2jMFd7Bx6/gRn5VlXn0Y33T/vbfv7xbOoEQNfhekVV3dpf5zmT/jirqiPm2N74YuoflSYCnG7s80P9y+Db6cah1mz2GXd3InB6kkk2Xam/m6r6cZL30AXNdcDldFfz5/PPSfan6/WcCXyH7gx+apKXAGcxfy9spdv3MeC0JOf3bRh5r7Gqrk/yNrr9EeDLVXXaIlezHPvpO/P0snbqL7beg+4kBHAkcGySv6Ib2nnVImrS1mdX4KwkO9Idq6+r7r+ObXX8MqsBSXarqlvSvZn/83Rvq/r8Stc1Ktt6+7a0fshloqq29v/eou1EExcxl9Hf9eNqlwI/pLsyvy3Z1tsnbVfsgUtSo+yBS1KjDHBJapQBLkmNMsAlqVEGuCQ16v8BRjSxPdqiZzYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "namn = [\"Små grisar\", \"Små gummor\", \"Små apor\", \"Bröder\", \"Dvärgar\"]\n", "antal = [3, 3, 10, 7, 7] # Det är viktigt att listorna innehåller lika många element.\n", "\n", "plt.bar(namn, antal)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Vi ritar samma diagram igen, men denna gång lägger vi till rubriker för tydlighet. Vi inleder också med .figure-kommandot som kan bestämma figurens storlek, och avslutar med .show-kommandot som gör resultatet snyggare." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEaCAYAAAAWvzywAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAb/UlEQVR4nO3deZxcVZ338c+XhC1AWEyL7I3K8kIURoKC+EhkcRBkmRFZhiVhcBh1WAb00TiOCo+Og48OiDCgASGAyC6yDotIWCQkdiAkARQYjAgEaPZlAAn85o9zmlyK6k530lW3u8/3/Xr1q+veunXv796u/tapU7fOVURgZmblWKbuAszMrL0c/GZmhXHwm5kVxsFvZlYYB7+ZWWEc/GZmhXHw2xKTdIakkHTCUq5nS0nHSlpjCR/fmeuYtDR11EnS7pLmSno178tqkqZJmlZ3bTbyOPhtiUhaEfhcnjxA0uilWN2WwLeBJQr+4S4fu/OAR4FPAdsCLwJfyj9mg8rBb0vqb4CxwDXAu4Fd6i1nWFsHWAW4KCJuiYg7IuKNiLg3Iu5tdzGSlq/z8dZ6Dn5bUhOBZ4FJwCvAwY0L5O6bkLSRpKslvSTpT5K+JWmZvMwk4Kz8kAfy8iGpM99/uKTpkp6R9JykOyTttiQFS9pY0mWSnsxdKg9Lurjn3YqkFSSdKGlervVxSVdK2rTJunaSdFdez4OSPi9pqqT5DcutJekcSU9Jek3SHEkHVo8R0POYn+V9n5bve0dXj6QPS7o1b/fPkv5F0nGSorJM064vSRPy/AmVedMk3Za7mu6S9Br5XYakDSWdJ6k71z5b0t80rLPnb7y5pOskvQRc1J+/h9Vnad6eW6EkrQ3sBEyJiG5JvwL+VtLqEfFsk4dcRgr3E4HdgeOAP+d5VwPfBf6V1HX0SH7Mgvy7EziDFI6j8+OvkrRrRPzXAEu/CngO+CLwFKmlvSuLGkDLk1re383bX4MUgndI2jQiHs/7v1mueyawH7Ac8E1gVeDNynFaCbgZWB34l7zPBwLnShoTEVPyvs0DLs7bvRp4oVnxksYBNwKPkV5o/wIcnY/R0tgY+DHwHeAh4BlJ6wEzgCfzNrqBfYFLJe0VEVc0rONy4GfA96kcAxuiIsI//hnQD/A1IIBt8/Rf5+kvNCx3bJ5/SMP8ucD1lelJebn3L2a7y5DC/3rg8sr8zvz4SX08dlxeZo8B7OcoYAypv/3oyvxfkIJwTGXeWsCrwPzKvMPzNic0rPfXpEAdlaff36x+YBowrTL9PVLYr1uZtyLwRPpX7vt4ABMa68nbeBPYsmHZn+V9fFfD/BuA2U3+xkfV/bz0T/9/3NVjS+Jg4IGImJ6nf82iVmgzVzdMzwPW78+GJG0l6SpJTwALgdeBnYFNBljz06TW7PGS/kHSRr1sbx9JMyQ9l7f3MrByw/a2Aa6JiP/pmRERC4DbG1b3CeDRiJjWMP/nQAew2QD3YRtgekT0vCsiIl7hncd3oOZHxOyGebuQPr95XtLonh/gOmALSWMblr9sKWuwNnLw24BI2poUWL/MpxyuRuoe+SWwraSNmzzsmYbp14AV+rGt9UhdG2sARwAfA7YGru3P46siNU93BrqAfwful/SQpC9Wtrc7cCFwH/B3wEfz9robtrcWqcXe6ImG6TVY1GVV9Xjl/oHo73YHqlmN7ya9kL/e8PODfP+7+rEOG6Lcx28DNTH//lr+aXQwqb9+MOxC6jffp9rKlTRmSVYWEQ8BB0sSsAWpK+ZUSfMjfV6wH/BgREyqbGtZ3hnQC0jB2GjNhulnaP7O5D3599MD3IX+bvfV/Hu5hvmNYd2j2djsTwO3kvrsm3msH+uwIcotfus3ScuRwnEG8MkmP7OBg3KwDsRr+feKDfN7Av71Sg0bA9sNcP1vE8ls4Jg8a/PK9hY2LH4Qqa+/6g5g1+oLkKS1mtR1M7CupMb5f0dqud83wNLvIL2rWrey3RWBxrOcniAd080b5g/kbKhrgQ8B90REV5Of1xa3Ahu63OK3gfgMqdX45Sb91kj6KXAa6UPEmwaw3p5z1f9J0tmkoJ9D+uxgIXCOpP8gdXUcBzzMABstkj4EnETqynmQFOaT8vp/kxe7FthL0omkM4C2Ao4knQlU9V1gb+A6ST8knQ30TVLgVs9omQocReoW+wbpjKUDSF1O/xgRbwxkH4ATSGckXSfpOFK4H5N/v9XijoiQdCFwqKT7gT+QQn/CALb1LdJZS7dIOoV0VtXqpBeT90bE3w+wdhtC3OK3gZhIOsPl4l7uP590Tv/EXu5vKiLuJp0dsjtwG/A7YO2IuIcUlBsAVwBfBSYDtyxB7Y+TXjCOyes6H1gb+ExEzMrLnA78G+m0xStJYbk78HxDvffm+1YhnbN+PHAKMKu6bES8DGxPOgvpeNIpj1sAB0U6lXNAIuIpYEfS9yfOAU4lvThe1lgj+QWHdFwvJH1GccQAtvUwMB64m3Q20Q2kF/XtWfRCacOU0mdeZrY0JK1MeidxdUQc2sbtjgLuBJ6KiB3btV0b3tzVY7YEJJ1MOn3zMdI7h6NIXSEntXi73yG9wPyJ1O32eVJf/K6t3K6NLA5+syWzAumMlzVJX6qaCewUEXNavN0g9b+vnW/PAfaKgX+L2Qrmrh4zs8L4w10zs8IMi66ecePGRWdnZ91lmJkNK7NmzXoqIjoa5w+L4O/s7KSrq6vuMszMhhVJf2o23109ZmaFcfCbmRXGwW9mVhgHv5lZYRz8ZmaFcfCbmRWmZcEv6UxJT0qaV5m3hqQbJD2Qf6/equ2bmVlzrWzxTyVdQalqMnBjRGxEuqTe5BZu38zMmmhZ8EfELbzzWqt7Amfn22cDe7Vq+2Zm1ly7v7m7ZkQsAIiIBZKaXT8UAEmHAYcBrL/++m0qz0aSzslX113CoJl//ECummjWtyH74W5ETImI8RExvqPjHUNNmJnZEmp38D+RL0rdc3HqJ9u8fTOz4rU7+K9g0fVYJ5KuQWpmZm3UytM5zwemA5tIekTSoaQLTu8s6QFg5zxtZmZt1LIPdyNi/17u8gWhzcxqNGQ/3DUzs9Zw8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhagl+SUdLukfSPEnnS1qhjjrMzErU9uCXtA5wJDA+IjYHRgH7tbsOM7NS1dXVMxpYUdJoYAzwWE11mJkVp+3BHxGPAj8EHgYWAM9HxPWNy0k6TFKXpK7u7u52l2lmNmLV0dWzOrAnsCGwNrCSpAMbl4uIKRExPiLGd3R0tLtMM7MRq46unp2AP0ZEd0S8DvwS+FgNdZiZFamO4H8Y2EbSGEkCdgTuq6EOM7Mi1dHHPwO4BLgTmJtrmNLuOszMSjW6jo1GxLeBb9exbTOz0vmbu2ZmhXHwm5kVxsFvZlYYB7+ZWWEc/GZmhXHwm5kVxsFvZlYYB7+ZWWEc/GZmhXHwm5kVxsFvZlYYB7+ZWWEc/GZmhXHwm5kVxsFvZlaYWsbjN7PW6px8dd0lDJr5x+824MeUvv+L4xa/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWmFqCX9Jqki6R9HtJ90nato46zMxKVNcVuE4Cro2IvSUtB4ypqQ4zs+K0PfgljQU+AUwCiIi/AH9pdx1mZqWqo6vnvUA3cJakuySdIWmlGuowMytSHcE/GvgwcFpE/BXwMjC5cSFJh0nqktTV3d3d7hrNzEasOoL/EeCRiJiRpy8hvRC8TURMiYjxETG+o6OjrQWamY1kbQ/+iHgc+LOkTfKsHYF7212HmVmp6jqr5wjgvHxGz0PAITXVYWZWnFqCPyJmA+Pr2LaZWel6DX5J7+h3r4qIOwe/HDMza7W+Wvz/0cd9AewwyLWYmVkb9Br8EfHJdhZiZmbt0a8+fkmbA5sBK/TMi4hzWlWUmZm1zmKDX9K3gQmk4L8G+DRwG+DgNzMbhvpzHv/epHPtH4+IQ4AtgOVbWpWZmbVMf4L/lYh4E1iYB1h7kjTejpmZDUP96ePvkrQacDowC3gJmNnKoszMrHUWG/wR8aV88yeSrgXGRsSc1pZlZmatstiuHkk39tyOiPkRMac6z8zMhpe+vrm7AunKWOMkrQ4o3zUWWLsNtZmZWQv01dXzj8A/k0J+FouC/wXgP1tblpmZtUpf39w9CThJ0hERcXIbazIzsxbqz4e7J0v6GNBZXd7f3DUzG576883dc4H3AbOBN/LswN/cNTMblvpzHv94YLOIiFYXY2Zmrdefb+7OA97T6kLMzKw9+tPiHwfcK2km8FqeFxGxZ+vKMjOzVulP8B9buS3g48D+LanGzMxabrFdPRFxM/A8sBswlTRS509aW5aZmbVKX9/c3RjYj9S6fxq4EJCvzGVmNrz11dXze+BWYPeIeBBA0tFtqcrMzFqmr66ezwKPAzdJOl3SjiwatsHMzIapXoM/Ii6LiH2BTYFpwNHAmpJOk/SpNtVnZmaDrD8f7r4cEedFxGeAdUnf4J3c6sLMzKw1+vMFrrdExDMR8dOI2KFVBZmZWWsNKPjNzGz4c/CbmRXGwW9mVhgHv5lZYRz8ZmaFcfCbmRXGwW9mVpjagl/SKEl3SbqqrhrMzEpUZ4v/KOC+GrdvZlakWoJf0rqk8f3PqGP7ZmYlq6vF/yPgq8CbvS0g6TBJXZK6uru721aYmdlI1/bgl/QZ4MmImNXXchExJSLGR8T4jo6ONlVnZjby1dHi3w7YQ9J84AJgB0k/r6EOM7MitT34I+LrEbFuRHSSLu34m4g4sN11mJmVyufxm5kVpq9r7rZcREwjXd3LzMzaxC1+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK0yt4/G3Q+fkq+suYdDMP363AT9mpOz/kuy7mTXnFr+ZWWEc/GZmhXHwm5kVxsFvZlYYB7+ZWWEc/GZmhXHwm5kVxsFvZlYYB7+ZWWEc/GZmhXHwm5kVxsFvZlYYB7+ZWWEc/GZmhXHwm5kVxsFvZlaYtge/pPUk3STpPkn3SDqq3TWYmZWsjitwLQS+HBF3SloFmCXphoi4t4ZazMyK0/YWf0QsiIg78+0XgfuAddpdh5lZqWrt45fUCfwVMKPJfYdJ6pLU1d3d3fbazMxGqtqCX9LKwKXAP0fEC433R8SUiBgfEeM7OjraX6CZ2QhVS/BLWpYU+udFxC/rqMHMrFR1nNUj4GfAfRFxQru3b2ZWujpa/NsBBwE7SJqdf3atoQ4zsyK1/XTOiLgNULu3a2Zmib+5a2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWmFqCX9Iukv4g6UFJk+uowcysVG0PfkmjgP8EPg1sBuwvabN212FmVqo6WvwfAR6MiIci4i/ABcCeNdRhZlYkRUR7NyjtDewSEZ/P0wcBH42IwxuWOww4LE9uAvyhrYUO3DjgqbqLqIn3vVwl7/9w2PcNIqKjceboGgpRk3nvePWJiCnAlNaXMzgkdUXE+LrrqIP3vcx9h7L3fzjvex1dPY8A61Wm1wUeq6EOM7Mi1RH8vwM2krShpOWA/YAraqjDzKxIbe/qiYiFkg4HrgNGAWdGxD3trqMFhk23VAt438tV8v4P231v+4e7ZmZWL39z18ysMA5+M7PCOPgXQ9K7JN0k6Tt119IKI33/BstIPU6S3pA0W9Ldku6U9LE+lv2xpPGSzujt2/aSpkkasqc4Vvb3nrzPx0habA5KukbSapJub0edrebgX7z9ge8AG0gaW3cxLTDS92+wjNTj9EpEbBkRWwBfB/69cYE8zAoRcWREdEXE5yPi3sHYeM+626hnfz8A7AzsCnx7cQ+KiF0j4rmIaPrCKGmpT5Rp57EY8cEv6Rv51X1OfqX/6EBXUflZ2lr2GOxB6YbS/g1lPk79MhZ4FkDShPwO5xfAXEkrSDpL0lxJd0n6ZF5uRUkX5ON6IbBiz8okfUrS9PxO4mJJK+f58yV9S9JtwOfav5tJRDxJGh3gcCUzJH2g5/787mUrSdvk/bhL0u2SNsn3T8r7dSVwvaQxki7qORZ5fePzsqdJ6srPweMq26jnWETEiP0BtgWmA8vn6XHA2gNcRwcwDfi3paxl9CDt06ihuH91/1SPy1B+HtT1vOlj/W8As4HfA88DW+X5E4CXgQ3z9JeBs/LtTYGHgRWAY0inZAN8CFgIjM/H+BZgpXzf14Bv5dvzga/W9Dx5qcm8Z4E1gaOB4/K8tYD78+1Ve55fwE7Apfn2JNIXUtfI018Bfppvb95zLPJ0zzKj8vPoQ3Uei5He4l8LeCoiXgOIiKci4jF465X2e/mVvEvShyVdJ+m/JX0hL7MyaRC5scAekpoOJifpUEn35xbC6ZJOyfOnSjpB0k3A93MLoee+z0mal/sZb8nzOiXdmltIb/W3Nra+htj+7V1Z7qVKvTfn1s/9ko6XdICkmbnF+L7K40/L+/aQpO0lnSnpPklTK+vdPz9unqTvV7cn6f9JmkEK97qfB3216r6f93+mpPfn+RtIujG3EG+UtH7luLz1vOljvwZDT9fHpsAuwDmSet7VzIyIP+bbHwfOBYiI3wN/AjYGPgH8PM+fA8zJy29DGn33t5JmAxOBDSrbvbBlezRwPft7EYta3fsAF+fbY4FLJM0DTgQ+UHnsDRHxTL79cdLzhIiYx6JjAbCPpDuBu/Ljq5+RtP9Y1PGq28ZX95VJrZn7gVOB7Sv3zQe+mG+fSPojrUJq2T2Z548Gxubb44AHyd99qKxn7byuNYBlgVuBU/J9U4GrWNRamFS5by6wTr69Wv49Blgh394I6Mq3J1BpfQ2x/du7suxLlXqfIwXu8sCjLGpJHQX8qPL4C0j/eHsCLwAfJHVBzgK2zNt/ONc9GvgNsFd+fAD7DIXnQb6vr1bdN/Ltg4Gr8u0rgYn59t8Dv2r2vGnx/8hLDdNPAO/Of8OrKvN/BexQmb6V1ML/FfDJyvw7SS3+3YHze9nmfGBcTZnQuL/vBZ7u+XtW9ut24IOVv8eR+XYnML/x/zlPX97LsdgwP2dWr6xvUp3HYkS3+CPiJWArUj9eN3ChpEmVRXqGipgLzIiIFyOiG3hV0mqkQPqepDnAr4F1SG8Jqz4C3BwRz0TE6yxqJfS4OCLeaFLeb4Gpkv6BFBSQgvV0SXPzeqqtgmrrayjtX29+FxELIrWy/xu4vlJLZ2W5KyP9B8wFnoiIuRHxJnBPXm5rYFpEdEfEQuA8UisTUjfFpYsrpE3HCfpu1Z1f+d3z7mRb4Bf59rmkFmOP3p43LSNpU9Jz8ekmd98CHJCX2xhYnzRibnX+5qTQBLgD2K7y7mZMftyQIakD+AkpvHu+yXoB8FVg1YjoeXe9KqnxAinse3Mb6Z0CSmc9fTDPH0tquD0vaU3StUhqVcfonG2V/3mmAdNyoE4kveICvJZ/v1m53TM9mvSE7iD1e74uaT6pX7NqcR/2vdxLXV9Q+oBxN2C2pC2BI0gtri1Ird5X+7GeOvdvYa6T3D2wXOW+xu1VaxndZLnealzYx/Zf7W84tvo4SdqQ1Me7dUQ8m7uqqstEL7fpZX7Tv3cLrJi7YiD9rSdGxBuLenvecirwk3zsFpJarK9JOg04K78ozgZmAkREd35xPV/S8nkd/0p611Wnnv1dlrQf5wInVO6/BDiJdAZXj/8PnC3pGNI7zt6cmpebQ3rxnwM8HxEPSLqL1Jh5iNToq9WIDn6lT9/fjIgH8qwtSX2T/bUq6e3+60pnMWzQZJmZwImSVgdeBD7L2/vhe6vtfRExA5ghaXfSiKWrAo9ExJuSJrLonUBv66h7/+aTWtIXkbpqlh3AtvtrBnCSpHGkD+H2B04eyAradJyateqmVe7fFzg+/56e591OGqTwXNKLy20DqGlQRETT51hETKNSf0S8SpPWbkS8QtqHZuv4DekdW+P8ziWpdTD0tr+V+5+gIRcjYjrp84we38zzp7Ko8QCpoXZgRLyaP8e6kfw8i4hJvWyvcyD1D5YRHfykvt2T89v1haR+tsP6fMTbnQdcKamLRWc+vE1EPCrpe6SAegy4l3R2xOL8QNJGpFbWjcDdpBbDpZI+B9zE4lt9de/f6cDlkmbmfRj0VmpELJD0ddLxEHBNRFw+wNW04zjdvZhW3fL5Q+hlSC9eAEcCZ0r6v6QuqEMGUJMNPWOAmyQtS3qufjHSVQaHHA/SNggkrRwRLyl9ieMy0ultl9Vd12AZ6fvXarlraHxEDPWrNVkhRvSHu210bO43nAf8kXSmw0gy0vfPrChu8ZuZFcYtfjOzwjj4zcwK4+A3MyvMSD+d00YoSe8inUIK8B7St3i78/RH2n0anaQfkIb4vYb0TeX/iYhz2lmDWX/5w10b9iQdSxqD5Yc11vAC0JGHqBjM9Y7qz7eT+7ucGbirx0aOFSX9MX95Bklj86iYyyqNKvojpbHU50n6SOOD1fvIqBdK2rWy3FRJn2147BXASqRvYe8r6VhJX8n3ba00+uZ0ST/IIzz2jOV+SmUdV0makG+/bdRRSQcqjeo5W9JPlS/Y0bjcYB5MG9kc/DZSvEIaYmC3PL0fadz01/P0SpGunvQl4Mwmj38S2DkiPkwaVuHHef4FeRpJywE7krpz3hIRe7BoeOPGIXbPAr4QEduSuqP6YyVgXkR8lDRg2r7AdhGxZV7HAY3LRUTbh3uw4cvBbyPJGSwa9uAQUuj2OB8gIm4BxubhG6p6Gxn1v4Ad8kBjnwZuyePTLFbexioR0XOd1l/0sXhVddTRHUnjIf0uf4luR9JQwo3LmfWbP9y1ESMifpu7bLYnjWU/r3p34+IN00fTZGTUPODWNOCvSS3v8+m/fo1smlVH8qyOOirg7Ij4epN19Ht0UrMqt/htpDmHFM5nNczv6a75OGmo3MaB9FYFFuRrARzE20dGvYD0DuL/ANf1t5CIeBZ4UdI2eVZ1FMv5wJaSlpG0Hum6B83cCOwt6d25/jUkNRsd1KzfHPw20pwHrM47W+bPSrqddOGNQ5s87lRgoqQ7SEPwVkcavZ508ZdfL8FpoocCUyRNJ7Xee15wfksa92gu8EPS1ZreISLuJY1jf30e5/0G0pXNzJaYT+e0EUXpGsB7RsRBlXnTgK9ERFcN9aycrwCGpMnAWhFxVLvrMKtyH7+NGJJOJn0Au+vilm2j3fL1BEaTLsoxqd5yzNziNzMrjvv4zcwK4+A3MyuMg9/MrDAOfjOzwjj4zcwK879LhD2iPiMExwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize = (6,4))\n", "\n", "plt.bar(namn, antal)\n", "\n", "plt.title(\"Antal sagofigurer\", fontsize = 16)\n", "plt.xlabel(\"Typ av figurer\")\n", "plt.ylabel(\"Antal\")\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Uppgift:\n", "\n", "Gör ett eget stapeldiagram. Skapa listor själv - hitta på något, eller välj ett av följande exempel:\n", "\n", "- Antal bilar av varje bilmärke på skolans parkering\n", "- Antal födelsedagar per månad bland alla i klassen" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Punktdiagram med plt.scatter()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Precis som plt.bar(), behöver plt.scatter() ha två listor med värden - x och y. Funktionen ritar sedan in dessa värdepar som punkter i ett koordinatsystem.\n", "\n", "Vi gör ett exempel där vi ritar in punkter för en parabel, $y \\ = \\ x^2$:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAAD4CAYAAADFJPs2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAANE0lEQVR4nO3df2zc913H8ed7TsrculuQWlnUiyhIU0TVwlJb2yBoiteKlDF1AQ1p0E38EIr2R7uCughCJSqYKjJFm5gQEoroJCTKLNSGCMEgHYqtwR8r1E2H26VBZfxo3dFuoHR1sdQke/OHL1niZrmze9/7nv1+PqST7r738d0r3/u+/P3e15fPRWYiaXN7S9sBJDXPoksFWHSpAIsuFWDRpQK2NPGg1113Xd54441dx7322mtcc801TURYk2HIMQwZzLHxc8zPz38rM69/wx2Z2ffL5ORk9mJ2drancU0bhhzDkCHTHKtttBzAE3mZTnroLhVg0aUCLLpUgEWXCrDoUgGtFP3oiUV2HTzOwuIr7Dp4nKMnFtuIIQ29fnWlkb+jX8nRE4scOLLA8plzsB0WTy9z4MgCAHt3Tgw6jjS0+tmVge/RDx07tRL8IstnznHo2KlBR5GGWj+7MvCiv3h6eU3Lpar62ZWBF/2GbaNrWi5V1c+uDLzo+/fsYHTryCXLRreOsH/PjkFHkYZaP7sy8JNx508irLzPeJWJbaPs37PDE3HSKv3sysCLDiv/gL07J5ibm+Oeu3a3EUHaEPrVFT8wIxVg0aUCLLpUgEWXCrDoUgEWXSrAoksFWHSpAIsuFWDRpQIsulSARZcKsOhSARZdKqCnokfEb0TEMxHxdER8ISLe2nQwSf3TtegRMQF8ApjKzJuBEeAjTQeT1D+9HrpvAUYjYgtwNfBic5Ek9VusfNNql0ER9wIPAsvAY5l512XG7AP2AYyPj0/OzMx0fdylpSXGxsbWmrnvhiHHMGQwx8bPMT09PZ+ZU2+443LfpXzxBfh+4DhwPbAVOAp89Eo/4/ejb8wMmeZYbaPl4E18P/rtwL9n5jcz8wxwBPiJHn8RSRoCvRT9v4D3RsTVERHAbcDJZmNJ6qeuRc/Mx4FHgCeBhc7PHG44l6Q+6mm658x8AHig4SySGuIn46QCLLpUgEWXCrDoUgEWXSrAoksFWHSpAIsuFWDRpQIsulSARZcKsOhSARZdKsCiSwVYdKkAiy4VYNGlAiy6VIBFlwqw6FIBFl0qwKJLBVh0qQCLLhVg0aUCLLpUgEWXCrDoUgEWXSrAoksFWHSpAIsuFWDRpQIsulSARZcK6KnoEbEtIh6JiGcj4mRE/HjTwST1z5Yex30O+LvM/HBEXAVc3WAmSX3WtegR8TbgfcAvA2Tm68DrzcaS1E+RmVceEPEu4DDwNeDHgHng3sx8bdW4fcA+gPHx8cmZmZmuT760tMTY2Ni6gvfTMOQYhgzm2Pg5pqen5zNz6g13ZOYVL8AUcBZ4T+f254BPXelnJicnsxezs7M9jWvaMOQYhgyZ5lhto+UAnsjLdLKXk3EvAC9k5uOd248At/byW0jScOha9Mz8b+D5iNjRWXQbK4fxkjaIXs+63wM83Dnj/nXgV5qLJKnfeip6Zj7Fynt1SRuQn4yTCrDoUgEWXSrAoksFWHSpAIsuFWDRpQIsulSARZcKsOhSARZdKsCiSwVYdKkAiy4VYNGlAiy6VIBFlwqw6FIBFl0qwKJLBVh0qQCLLhVg0aUCLLpUgEWXCrDoUgEWXSrAoksFWHSpAIsuFWDRpQIsulSARZcKsOhSARZdKqDnokfESESciIi/bjLQIB09sciug8dZWHyFXQePc/TEYtuRNCQ227axlj36vcDJpoIM2tETixw4ssDi6WUAFk8vc+DIwoZ/QfXmbcZto6eiR8Q7gJ8B/qTZOINz6Ngpls+cu2TZ8plzHDp2qqVEGhabcduIzOw+KOIR4PeBa4FPZuYHLzNmH7APYHx8fHJmZqbr4y4tLTE2NrbWzH2xsPjKhevjo/DS8nfvu2Xi7QPP0+a6MMelhm3bgN7Xx/T09HxmTq1evqXbD0bEB4GXM3M+InZ/r3GZeRg4DDA1NZW7d3/PoRfMzc3Ry7gm3H/w+IVDs/tuOctnFlZWxcS2Ue65a/CZ2lwX5rjUsG0b8ObXRy+H7ruAOyPiP4AZ4P0R8WfrfsYhsX/PDka3jlyybHTrCPv37GgpkYbFZtw2uu7RM/MAcACgs0f/ZGZ+tNlYzdu7cwKg877rVSa2jbJ/z44Ly1XXZtw2uhZ9M9u7c4K9OyeYm5tr7ZBMw2mzbRtrKnpmzgFzjSSR1Bg/GScVYNGlAiy6VIBFlwqw6FIBFl0qwKJLBVh0qQCLLhVg0aUCLLpUgEWXCrDoUgEWXSrAoksFWHSpAIsuFWDRpQIsulSARZcKsOhSARZdKsCiSwVYdKkAiy4VYNGlAiy6VIBFlwqw6FIBFl0qwKJLBVh0qQCLLhVg0aUCLLpUQNeiR8T2iJiNiJMR8UxE3DuIYJL6Z0sPY84C92XmkxFxLTAfEV/KzK81nE1Sn3Tdo2fmNzLzyc71V4GTwETTwST1T2Rm74MjbgS+DNycmd9edd8+YB/A+Pj45MzMTNfHW1paYmxsbC15GzEMOYYhgzk2fo7p6en5zJx6wx2Z2dMFGAPmgZ/rNnZycjJ7MTs729O4pg1DjmHIkGmO1TZaDuCJvEwnezrrHhFbgUeBhzPzyBp+EUkaAr2cdQ/gIeBkZn62+UiS+q2XPfou4GPA+yPiqc7lAw3nktRHXf+8lpn/CMQAskhqiJ+Mkwqw6FIBFl0qwKJLBVh0qQCLLhVg0aUCLLpUgEWXCrDoUgEWXSrAoksFWHSpAIvesqMnFtl18DgLi6+w6+Bxjp5YbDtSq1wfzehlFlg15OiJRQ4cWWD5zDnYDounlzlwZAGAvTvrzb/p+miOe/QWHTp2amWjvsjymXMcOnaqpUTtcn00x6K36MXTy2tavtm5Pppj0Vt0w7bRNS3f7FwfzbHoLdq/ZwejW0cuWTa6dYT9e3a0lKhdro/meDKuRedPMK28B32ViW2j7N+zo+yJJ9dHcyx6y/bunGDvzgnm5ua4567dbcdpneujGR66SwVYdKkAiy4VYNGlAiy6VIBFlwqw6FIBFl0qwKJLBVh0qQCLLhVg0aUCLLpUgEWXCuip6BFxR0SciojnIuK3mg6lwXP21c2ta9EjYgT4I+CngZuAX4iIm5oOpsE5P/vqYmdutvOzr1r2zaOXPfq7gecy8+uZ+TowA3yo2VgaJGdf3fwiM688IOLDwB2Z+Wud2x8D3pOZd68atw/YBzA+Pj45MzPT9cmXlpYYGxtbZ/T+GYYcbWZYWHzlwvXxUXjpoklXb5l4ewuJhuM12Yg5pqen5zNzavXyXqaSissse8Nvh8w8DBwGmJqayt27d3d94Lm5OXoZ17RhyNFmhvsPHr9w2H7fLWf5zMLKZjGxbbS16ZyG4TXZTDl6OXR/Adh+0e13AC+u+xk1dJx9dfPrZY/+z8A7I+KHgEXgI8AvNppKA+Xsq5tf16Jn5tmIuBs4BowAn8/MZxpPpoFy9tXNrafpnjPzi8AXG84iqSF+Mk4qwKJLBVh0qQCLLhXQ9ZNx63rQiG8C/9nD0OuAb/U9wNoNQ45hyADmWG2j5fjBzLx+9cJGit6riHjich/Xq5hjGDKYY/Pm8NBdKsCiSwW0XfTDLT//ecOQYxgygDlW2xQ5Wn2PLmkw2t6jSxoAiy4V0GrRI+JTEfEvEfFURDwWETe0lONQRDzbyfKXEbGtpRw/HxHPRMR3ImLgf9IZhklAI+LzEfFyRDzdxvN3MmyPiNmIONl5Pe5tKcdbI+KfIuKrnRy/u+4Hy8zWLsDbLrr+CeCPW8rxU8CWzvVPA59uKcePADuAOWBqwM89Avwb8MPAVcBXgZtaWAfvA24Fnm7jNehk+AHg1s71a4F/bWldBDDWub4VeBx473oeq9U9emZ++6Kb13CZKaoGlOOxzDzbufkVVmbRaSPHycxsa0bGoZgENDO/DPzvoJ93VYZvZOaTneuvAieBgc/CkSuWOje3di7r6kjr79Ej4sGIeB64C/idtvMAvwr8bdshWjABPH/R7RdoYeMeNhFxI7CTlb1pG88/EhFPAS8DX8rMdeVovOgR8fcR8fRlLh8CyMz7M3M78DBw95UfrbkcnTH3A2c7WVrL0ZKeJgGtJCLGgEeBX1919DkwmXkuM9/FylHmuyPi5vU8Tk8zzLwZmXl7j0P/HPgb4IE2ckTELwEfBG7LzpuiNnK0yElALxIRW1kp+cOZeaTtPJl5OiLmgDuANZ+obPus+zsvunkn8GxLOe4AfhO4MzP/r40MQ+DCJKARcRUrk4D+VcuZWhERATwEnMzMz7aY4/rzfwGKiFHgdtbZkbb/99qjrJxl/g4r/63145k58O8BiojngO8D/qez6CuZ+fEWcvws8IfA9cBp4KnM3DPA5/8A8Ad8dxLQBwf13Bdl+AKwm5X/lvkS8EBmPjTgDD8J/AOwwMq2CfDbuTJ34iBz/Cjwp6y8Hm8B/iIzf29dj9Vm0SUNRutn3SU1z6JLBVh0qQCLLhVg0aUCLLpUgEWXCvh/jj+zCfGaGrsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "xvarden = [-3, -2, -1, 0, 1, 2, 3]\n", "yvarden = [9, 4, 1, 0, 1, 4, 9]\n", "\n", "fig = plt.figure(figsize = (4,4))\n", "plt.scatter(xvarden, yvarden)\n", "\n", "plt.grid()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Graf med plt.plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Om vi istället för punkter vill ha en sammanbunden linje, kan vi använda plt.plot() på samma sätt som i föregående exempel.\n", "\n", "Vi testar:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAAD4CAYAAADFJPs2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAgp0lEQVR4nO3de3RU5b3/8feTG7lBArkMQoAASYAIEQnKVbklaK21Xmrramtbe1pq6wXFteppe1rPOdb+bH+/orTaU7XWXrSlrfXS0qqZQLiqKCDXhNyAEG4TkhCSkHvy/P6YpOaMSCbJzDx7z3xfa81aCZnMfAh88uzZs797K601QojgFmY6gBDC/6ToQoQAKboQIUCKLkQIkKILEQIi/PGgycnJOj09fcD7Xbhwgbi4OH9EGBQr5LBCBslh/xy7d++u1VqnfOQLWmuf33Jzc7U3ioqKvLqfv1khhxUyaC05PNktB7BLX6STsukuRAiQogsRAqToQoQAKboQIUCKLkQIkKILEQKk6EKEAL8cMDOQprZOfvv2MaIbu1lqIoAQNtHdo/nRP0uY1NM9rMcxsqJHhofxdFElb5/qMvH0QtjG7qpzPL/9KGdahnfeCCNFj44M55rMZPbWdKPlxBdCfCxn8RkiwxWzksOH9TjGXqPnZzuob9McPNloKoIQlqa1xlnsYsHUZGIi1LAey1jRV8xwoHD/xhJCfFRFTTPH6lrIz3YM+7GMFX1MXBSZo8NwltSYiiCEpTlLXADkz7Bx0QGuTI2g5HQj1fUtJmMIYUnOYhc5aQmMTYge9mMZLrp7B0Nh728uIYRbTVMbe6sbfLKag+Gij40LIyM1HmexFF2I/jaW1KA15Png9TlY4Mi4/GwHO4/Wc76l03QUISzDWewibXQM08eO9MnjWaLo3T2aolLZKScEwIX2LrZX1JKf7UCp4b2t1sd40WenJZIycsS/9jAKEeq2ldfS0dXjk7fV+hgveliYIm9GKltKz9LeNbzjeYUIBs5iFwkxkVydPsZnj2m86ODefG9u7+LdI/WmowhhVFd3D5sOu1g+PZWIcN/V0xJFXzg1mZjIcDlKToS83VXnONfSSZ6P3lbrY4miR0eGc21WMoXFNTLkIkKas9hFVHgYS6Z99NTsw2GJogPkZ4/lTGMbB06eNx1FCCO01jhLXCyYmkT8CN+eKsIyRV8+PZUwBYVy8IwIURU1zVT5aIjFk2WKPiYuirnpYyiQoosQ1fd/P6iLDrAy28HhM00y5CJCkrPYxRVpCThGDX+IxZNXRVdKPaiUOqSUOqiU+qNSyvdJ4F97GuXYdxFqahrdQyy+3tveZ8CiK6XGA/cDc7XWM4Fw4A5/hElPjiNThlxECCrsPS9D/uWGit4rAohRSkUAscApv6TB/frkvWP1NLR0+OsphLAcZ/EZJoyJYZrDN0MsnpQ371srpVYDjwGtQIHW+gsXuc8qYBWAw+HIXb9+/YCP29zcTHx8/P/6s8qGbh59t41VOSNYOC4wZ6O+WI5As0IGyWEmR1uX5t5NLSyfEMHnZ4wYVo5ly5bt1lrP/cgXLnYt5f43YDSwCUgBIoHXgC9e6nuGc3307u4efdUPnfpbL+726jF8wQrXwLZCBq0lh6dA5HjjwCk96eEN+u2K2mHnYBjXR88Djmqtz2qtO4FXgIVefN+QhIUpVsxwsLm0RoZcREgo6B1iuSp9tN+ew5uiHwfmK6VilXs4dgVQ4rdEQH52Khc6unmnss6fTyOEce4hlhqfD7F4GvCRtdY7gZeBPcCB3u951m+JcA+5xEaFy953EfR2VZ2joaXTLwfJ9OfVrxCt9SNa6+la65la6zu11u3+DBUdGc61mSkUlrjo6ZEhFxG8+oZYrs3y7RCLJ0sdGddffrYDV2M7B0/JkIsITlprCktcLMzw/RCLJ8sWffn0VMLDlGy+i6BV7schFk+WLfrouCjmThotRRdBq+//tr8Oe+3PskUH9+a7DLmIYFXgxyEWT5YvOiCjqyLouBrb2FfdEJDNdrB40SclxZHliJdzyYmg03cZsvzssQF5PksXHdyr+vvHzsmQiwgqzmIXE8fEkuUIzPH8Nij6WLmSiwgqF9q7eLuizqdXYhmI5YueMz6B1JEjZO+7CBpby87S0e3bK7EMxPJF7xtykSu5iGDhLHaRGBvJ3En+G2LxZPmig/tcchc6unlbhlyEzXV197CptIbl0/w7xOLJFkVfMDVJhlxEUHDvWPb/EIsnWxQ9OjKcJVkpFBbLkIuwN2exi6gI/w+xeLJF0cH9NltNU7tcyUXYltYaZ8kZFk1NIs7PQyyebFN0GXIRdlfmaqa6vjVgB8n0Z5uiJ8bKkIuwt74jPFfMSA34c9um6ODefC91NXG8ToZchP04i11cMSExIEMsnmxV9JW9mzwFcuy7sBlXYxv7TpxnZYD3tvexVdEnJsUyzTFSNt+F7Tj9eAFFb9iq6OD+Qe2qOse5CzLkIuyjsMTFpKRYMlPNXJTClkWXIRdhJ819QywzAjfE4sl2RZ8lQy7CZvqGWPIMbbaDDYseFqbIy3awpewsbZ0y5CKsz8QQiyfbFR3cm+8tciUXYQOdAboSy0BsWfSFU5OIiwqXc8kJy3v/WD3nWzuNva3Wx5ZFHxERzpJpKWyUK7kIiyssriEqIoxrMgM7xOLJlkWHD4dc9suQi7CoviGWxRnJAR9i8WTboi+b1jfkIkfJCWsqdTVRXd8akAs0DMS2RU+MjeKqdBlyEdblPNR3JZbAD7F4sm3RwX2G2DJXM1V1F0xHEeIjnCUuZk9IJNXAEIsnWxe9b0+mrOrCas6cb2P/ifPGjm33ZOuiTxgTy/SxMuQirKfvSiym31brY+uiQ9+VXOplyEVYirPYRXpSLBmGhlg82b7oeTMc9GjYdFiGXIQ1NLd38U5lHXkGh1g82b7os8Yn4BglQy7COraUBv5KLAPxquhKqUSl1MtKqcNKqRKl1AJ/B/NWWJgib4aDreUy5CKswVl8htGxkeQaHGLx5O2Kvg54U2s9HbgCKPFfpMHrG3J5u7LWdBQR4j4cYnEYHWLxNGASpdQo4FrgeQCtdYfWusHPuQZlwdQk4kdE4CyW1+nCrPeP1dPY1mWpzXYApfWlh0KUUrOBZ4Fi3Kv5bmC11vqCx/1WAasAHA5H7vr16wd88ubmZuLjfbNX8um9bZSd6+GJpTGEDXIHiC9zDJUVMkiO4ed4qaSdouounl4ey4gI3+2I8zbHsmXLdmut537kC1rrS96AuUAXMK/383XAo5f6ntzcXO2NoqIir+7njVf2VOtJD2/Qe6rqB/29vswxVFbIoLXk8DSYHD09PXrR4xv1XS+8ZywHsEtfpJPevIg4AZzQWu/s/fxlYI43v4UC6cMhF9n7Lsw4fKaJE+daLbfZDl68RtdanwGqlVLTev9oBe7NeEtJjI3i6vQxUnRhjLPYhVJmrsQyEG93C94HvKSU2g/MBn7kt0TDkJ/toLymmWO1MuQiAs9Z3DvEMtL8EIsnr4qutd6rtZ6rtc7RWt+stT7n72BD0bfJ1HecsRCBcvp8KwdOWmeIxZN13ujzgb4hFzmXnAi0whL3W7tWGWLxFFRFh94ruRyrp16GXEQA9Q2xTE0x/5bgxQRl0WXIRQRSU1sn71TWkp9tnSEWT0FX9FnjExg7KlrOJScCZkvZWTq7Nfm9V/u1oqArulKKvOxUtpbVypCLCAhnsYsxcVGWGmLxFHRFB/e55Fo7ZchF+F9ndw9FvVdiCQ+z5mY7BGnR508Z0zvkInvfhX+9f9SaQyyegrLoIyLCWZKVQmFJjVzJRfhVQbGLERFhXJOZbDrKJQVl0cG99/1sUzt7TzSYjiKClNYaZ7GLxRnJxEaZvRLLQIK26DLkIvyt5HQTJxusOcTiKWiLnhAbybzJMuQi/OfDIRYpulH52Q4qapo5KkMuwg8KS1xcOSGRlJEjTEcZUFAXve/idoWyqgsf+3CIxboHyfQX1EWXK7kIf+lbPPKzrTd7fjFBXXRwTxPtqpIhF+FbBcUuJifHWXaIxVPQFz0/eyw9GjbKjLrwkca2Tt49UmfpIRZPQV/0meNHcVlCtGy+C5/ZUto3xGL9ve19gr7oSrmv5LKtXIZchG8UlrhIiotizkTrDrF4Cvqig/ttttbObnZUyJCLGB67DLF4Comiz5MhF+Ej7/UOseTZaLMdQqToIyLCWTJNhlzE8DltMsTiKSSKDu632Wqb2/mgusF0FGFTfUMs12Raf4jFU8gUfem0VCJkyEUMQ/HpRtsMsXgKmaInxEQyb8oYOee7GLLC4hqUguXTpeiWlj9DhlzE0DlLzjBn4mhbDLF4Cqmi9+0plTPEisE61dDKwZON/xqUspuQKnra6FhmXDZKXqeLQet7yWfH1+cQYkUH9z/U7qpz1DW3m44ibMRZ7GJKchwZqfYYYvEUckVf2Xsll41yJRfhpf5DLHYVckW/fNwoxiVEy8kohNfsOMTiKeSK7r6Siwy5CO85i91DLFfaaIjFU8gVHdynmGrt7GZ7uQy5iEvr6tEUldpviMVTSBZ9/pQkRsqQi/BCaX0PTTa4EstAQrLoURFhLJmWwsbDLrplyEVcwp6aLqIjw7gmM8V0lGEJyaKD+2222uYO9lafMx1FWJTWmg9qulmckUJMVLjpOMPiddGVUuFKqQ+UUhv8GShQPhxykbfZxMUVn26kvk2z0uab7TC4FX01UOKvIIGWEBPJ/ClJcjis+FjOYhcKWD7DHqd0vhSviq6USgM+CfzKv3ECK29GKpVnL3Cqucd0FGExWmsKDrmYmhhGcrz9hlg8eTs9/yTwbWDkx91BKbUKWAXgcDjYvHnzgA/a3Nzs1f38JaGthwgFG8pbGGcwB5j/WUiO/624rpvi023cPkUHx89Da33JG3Aj8Ivej5cCGwb6ntzcXO2NoqIir+7nT4+8flBP/vcN+ujZZqM5rPCz0FpyaK11T0+PvuXp7Xr+jwr1W4WbjOXoz9ufB7BLX6ST3my6LwJuUkodA9YDy5VSLw79V4u1fGvpVCIU/GxjuekowiI2l55lz/EG7l2eQVS4fQ+S6W/Aomutv6O1TtNapwN3AJu01l/0e7IASR0VzfKJkby29yQVNc2m4wjDtNasdZaRNjqG23MnmI7jMyH7Pnp/N0yJJCYynCcLy0xHEYYVFLs4cPI8q1dkEhURPPUY1N9Ea71Za32jv8KYMipKcdeiyWzYf5qS042m4whDeno0awvKmJIcxy1Xjjcdx6eC51fWMH39mimMjI7gCaes6qHqHwdOU+pqYnVeJhHhwVWN4PrbDENCbCRfv2YKBcUu9p9oMB1HBFhXdw9PFJaR5YjnxpxxpuP4nBS9n7sWpZMYG8laWdVDzut7T3Hk7AUezMuy9Tjqx5Gi9zMyOpK7l0xlc+lZdlfVm44jAqSzu4d1G8u5fNworrt8rOk4fiFF9/ClBZNIjo/ipwWyqoeKl3ef4Hh9C2vyswgLwtUcpOgfERsVwTeXZvB2ZR1vV8oZaIJde1c3P99YzuwJiSyfbv/hlY8jRb+IL8ybyNhR0awtKOs7DFgEqT+9X82p8208tDILpYJzNQcp+kVFR4Zzz/IMdlWdY6ucVy5otXV289SmCq5OH8PiDHtdBnmwpOgf43NzJzA+MYa1BaWyqgepF9+toqapPehXc5Cif6yoiDBWr8hk34nzFJbIWWiCzYX2Lv5ncyWLM5KZNyXJdBy/k6Jfwq1zxpOeFMtaZxk9chLJoPKbt49Rd6GDNSuzTEcJCCn6JUSEh/FAXhYlpxt585CccipYNLZ18uzWIyyfnsocG1+UYTCk6AP41BXjyEyNZ62zTE4NHSSe33aU862drMkPjdUcpOgDCg9TPJCXRUVNM3/fd8p0HDFMDS0d/Hr7Ua673MHM8Qmm4wSMFN0Ln5g5lhmXjeLJwjK6uuVEknb27NYjNHd08WAIreYgRfdKWJhiTX4Wx+paeGXPSdNxxBDVNrfzwo5j3JgzjuljR5mOE1BSdC/lzUjlirQE1m0sp6NLVnU7+uXmStq7unkgL9N0lICTontJKcWaldM42dDKn3ZVm44jBsnV2Mbv363ilivTmJoSbzpOwEnRB+HazGTmThrNU5vK5drqNvN0UQXdPZrVK0JvNQcp+qAopXho5TRcje28tPO46TjCSyfOtfDH945z+9wJTEyKNR3HCCn6IC2YmsTCqUn8z+YKWjq6TMcRXnhqUwUKxX3LM0xHMUaKPgQPrcyitrmD371TZTqKGEBV3QX+svsEn583kXGJMabjGCNFH4LcSWNYOi2FX26ppKmt03QccQnrNpYTEab41tKppqMYJUUfojX5WTS0dPLCjmOmo4iPUVHTzGsfnORLCyaROiradByjpOhDlJOWyMpsB89tO8L5FlnVrejJwjKiI8O5e0lor+YgRR+WB/OzaGrr4rltR0xHER5KTjeyYf9p7lqUTlIQXN98uKTowzDjslHcmHMZL+w4Sl1zu+k4op8nnGWMjI5g1TWymoMUfdgeyMuitbObZ7bKqm4VB06cp6DYxdcWTyEhNtJ0HEuQog9TRmo8N88ez+/eOUZNY5vpOAL4qbOUxNhIvro43XQUy5Ci+8DqvEw6uzW/2FxpOkrI2111js2lZ/nGtVMZGS2reR8pug9MSorj9tw0/rDzOKcaWk3HCWlrnaUkx0fx5YWTTEexFCm6j9zXOyzxVFGF4SSh653KOnZU1PHNpRnERkWYjmMpUnQfGZ8Ywx1XT+DP71dzvK7FdJyQo7VmrbMUx6gRfGHeRNNxLEeK7kP3LMsgPEzxs03lpqOEnK3ltbx/7Bz3LssgOjLcdBzLkaL7kGNUNHfOn8Qre05QebbZdJyQobVmbUEp4xNj+OxVE0zHsaQBi66UmqCUKlJKlSilDimlVgcimF3dvXQq0ZHhrCuUVT1QNpbUsO/Eee5fkcGICFnNL8abFb0LeEhrPQOYD9yjlMr2byz7So4fwZcXpvP3/acoPdNkOk7Q6+nR/NRZxqSkWG6dk2Y6jmUNWHSt9Wmt9Z7ej5uAEmC8v4PZ2TeunUJ8VARPOMtMRwl6bx46Q8npRh7IyyQyXF6Jfhw1mCuFKqXSga3ATK11o8fXVgGrABwOR+769esHfLzm5mbi482fqM8fOV4t7+D1yk7+c0E06QkDb04G88/CXzl6tOY/truPW/jh4hjC/HBFVDv9PACWLVu2W2s99yNf0Fp7dQPigd3ArQPdNzc3V3ujqKjIq/v5mz9ynG/t0Dn/+Za+64X3jGUYCjvleHXPCT3p4Q16w75TRnMEgrc5gF36Ip30altHKRUJ/BV4SWv9yiB+EYWsUdGRrLp2CpsO17Dn+DnTcYJOV3cPTxaWMX3sSD4xc6zpOJbnzV53BTwPlGit1/o/UvD4ysJ0kuKi5LW6H7yy5yTH6lpYk59FWJjvN9mDjTcr+iLgTmC5Umpv7+0GP+cKCnEjIvjm0qlsK69l55E603GCRkdXD+s2lpOTlkB+tsN0HFvwZq/7dq210lrnaK1n997+GYhwweCL8yeROnIEPy0o69vXIYbpz7uqOdnQypr8LJQfdsAFI3k/ws+iI8O5d3kG7x2rZ3tFrek4ttfW2c1TmyqYO2k0S7JSTMexDSl6AHzuqgmMS4iWVd0H/rDzOGca21izUlbzwZCiB8CIiHDuW5HJ3uoGikprTMexrZaOLn6xuYIFU5JYODXZdBxbkaIHyGdy05g4JlZW9WH43TtV1DZ38NDKLNNRbEeKHiCR4WGsXpHJoVONvHXojOk4ttPU1skzWypZkpXC3PQxpuPYjhQ9gG6+cjxTU+JY6yyju0dW9cF4YccxzrV0ymo+RFL0AAoPUzyQl0WZq5kN+0+ZjmMb51s6eW7bEfKzHeSkJZqOY0tS9AD75KzLmD52JOsKy+nq7jEdxxZ+tf0ITW1drMmX1XyopOgBFhameDA/iyO1F3j1g5Om41he/YUOfr39KJ/MuYwZl40yHce2pOgGrMx2MGt8Aj/bVE5Hl6zql/LMlkpaO7t5MC/TdBRbk6IboJRizcosqutb+cvuatNxLKumqY3fvnOMm2ePJyN1pOk4tiZFN2RpVgpzJiby1KYK2jq7TcexpF8UVdLZrbl/hazmwyVFN0QpxUMrp3H6fBvr3ztuOo7l1LX28Iedx/nMnDTSk+NMx7E9KbpBC6cmMX/KGJ4qqqS9W95X7+/vRzrRaO5bkWE6SlCQohvUt6rXNrez6XiX6TiWUV3fwrYTXdxx1UTSRseajhMUpOiGXZU+hmsyk/nHkQ72VjeYjmNcQ0sH33vtIEq5r3wjfEOKbgHfvzGbqHDFrb/YwQ83FNPaEZo75944cJq8tVvZUVHL56ZFMTYh2nSkoCGXnLSALMdIHlscw/amZH61/SgFxS4ev21WyIxi1jS28YPXD/HmoTNcPm4Uv/3qVZwt+8B0rKAiK7pFxEQoHrtlFutXzSdMweef28l3XtlPY1un6Wh+o7XmL7uqyVu7hU2lNTx8/XRev2cRl49LMB0t6MiKbjHzpyTxxuprebKwjOe2HWHT4Roeu3kWeUF2EsTq+ha+++oBtpXXcnX6GB6/bRZTUsxfKCFYyYpuQTFR4Xznhhm8ds8iRsdG8bXf7eK+P35AbXO76WjD1t2j+c2Oo1z35Fb2VJ3j0U9fzvpV86XkfiYruoXlpCXyt3sX88yWSn6+qYLt5Wd55FOX8+nZ42x5vrSKmiYe/usBdledY0lWCj+6dRbjE2NMxwoJsqJbXFREGPetyOQf9y8mPTmOB/60l3/77S5ONbSajua1zu4entpUzg3rtlN5tpm1n72C39x1lZQ8gKToNpHpGMnLdy/kBzdm805lHSuf2MqL71bRY/Ez1Rw8eZ6bntrB/ysoI/9yB84Hl3DrnDRbbpHYmWy620h4mOKriyeTN8PBd17dz3+8dpC/7zvF47flMNlix4O3dXbzZGE5z207QlJcFM/cmct1l8s10kyRFd2GJibF8uK/zeMnt+VQfLqR65/cyjNbKi1zxpr3jtZzw7pt/HJLJZ+Zk4ZzzRIpuWGyotuUUorPXjWBJdNS+P5rB/k/bxxmw/7T/Pi2HLLHmTkTS1NbJz95s5Tfv1vFhDExvPS1eSzKCI2DfqxOVnSbc4yK5pk7c3n683M4fb6Vm57azk8LSmnvCuxhtEWlNVz3xFZe3FnFVxdN5q0HrpWSW4is6EFAKcUncy5j4dQkHv1HMT/fVMEbB8/w49tyyJ002q/Pfe5CB49uKOaVD06SmRrPX7+5kDkT/fucYvBkRQ8io+OiWPvZ2bxw11W0tHfxmV++zX/9/RAtHb4fgdVas2H/KfLWbuFv+05x/4pMNty/WEpuUbKiB6Fl01IpWLOEn7x5mBd2HMNZ7OLxW3NYnOmbTWlXYxvff+0gBcUuctISePFr8+QMrRYnK3qQih8RwX9/eiZ//sYCIsPD+OLzO/n2y/s43zr0IRmtNX96/zh5a7ewpews371hOq98c6GU3AZkRQ9yV08ewxurr2HdxnKe3XqEzaVnefTmmYN+u+t4XQvfeXU/OyrqmDd5DD++LUfO5WYjsqKHgOjIcB6+fjqvfWsRSfEj+Mbvd3PPS3s42zTwkEx3j+b57e4hlH3V53nslpn88evzpeQ2Iyt6CJmVlsDf7l3Es1uPsK6wnO0VtfzgxmxunTP+ooeklrma+PbL+9lb3cDy6ak8dstMLkuQ49PtyKsVXSl1vVKqVClVoZT6d3+HEv4TGR7GPcsy+Ofqa8hIjeehv+zjKy+8z8l+QzIdXT38bGM5n/zZNqrqLrDujtk8/+W5UnIbG3BFV0qFA08D+cAJ4H2l1N+01sX+Dif8JyM1nr98YwG/e+cYP3mrlJVrt/DwJ6bT1dDN409t5/CZJm66YhyPfCqbpPgRpuOKYfJm0/1qoEJrfQRAKbUe+DQgRbe5sDDFVxZNZsUMB9999QA/eP0QAGNHwa++NDfozmoTypTWlx5zVEp9Brhea/213s/vBOZpre/1uN8qYBWAw+HIXb9+/YBP3tzcTHy8+TOLWCGH6Qxaa94+1cWxc+3cMi2O2EizY6Smfx52zbFs2bLdWuu5H/mC1vqSN+B24Ff9Pr8T+Pmlvic3N1d7o6ioyKv7+ZsVclghg9aSw5PdcgC79EU66c3OuBPAhH6fpwGnvPg+IYRFeFP094FMpdRkpVQUcAfwN//GEkL40oA747TWXUqpe4G3gHDg11rrQ35PJoTwGa8OmNFa/xP4p5+zCCH8RA6BFSIESNGFCAFSdCFCgBRdiBAw4JFxQ3pQpc4CVV7cNRmo9XmAwbNCDitkAMnhyW45JmmtUzz/0C9F95ZSape+2OF6IZjDChkkR/DmkE13IUKAFF2IEGC66M8afv4+VshhhQwgOTwFRQ6jr9GFEIFhekUXQgSAFF2IEGC06EqpR5VS+5VSe5VSBUqpcYZy/F+l1OHeLK8qpRIN5bhdKXVIKdWjlAr4WzpWOAmoUurXSqkapdRBE8/fm2GCUqpIKVXS+++x2lCOaKXUe0qpfb05/mvID3axs1EE6gaM6vfx/cAvDeVYCUT0fvxj4MeGcswApgGbgbkBfu5woBKYAkQB+4BsAz+Da4E5wEET/wa9GS4D5vR+PBIoM/SzUEB878eRwE5g/lAey+iKrrVu7PdpHGBkz6DWukBr3Xclwndxn0XHRI4SrXWpieem30lAtdYdQN9JQANKa70VqA/083pkOK213tP7cRNQAow3kENrrZt7P43svQ2pI8ZfoyulHlNKVQNfAH5gOg/wVeAN0yEMGA9U9/v8BAb+c1uNUioduBL3amri+cOVUnuBGsCptR5SDr8XXSlVqJQ6eJHbpwG01t/TWk8AXgLuvfSj+S9H732+B3T1ZjGWw5CLnfY1pN97VUrFA38FHvDY+gwYrXW31no27q3Mq5VSM4fyOH6/JJPWOs/Lu/4B+AfwiIkcSqkvAzcCK3TviyITOQySk4D2o5SKxF3yl7TWr5jOo7VuUEptBq4HBr2j0vRe98x+n94EHDaU43rgYeAmrXWLiQwWICcB7aXcF6J7HijRWq81mCOl7x0gpVQMkMcQO2J6eu2vuPcy9+Aea71ba33SQI4KYARQ1/tH72qt7zaQ4xbg50AK0ADs1VpfF8DnvwF4kg9PAvpYoJ67X4Y/Aktxj2W6gEe01s8HOMNiYBtwAPf/TYDvave5EwOZIwf4Le5/jzDgz1rr/x7SY5ksuhAiMIzvdRdC+J8UXYgQIEUXIgRI0YUIAVJ0IUKAFF2IECBFFyIE/H+GfwB3USE1KgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "xvarden = [-3, -2, -1, 0, 1, 2, 3]\n", "yvarden = [9, 4, 1, 0, 1, 4, 9]\n", "\n", "fig = plt.figure(figsize = (4,4))\n", "plt.plot(xvarden, yvarden)\n", "\n", "plt.grid()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Vi märker att den här parabeln blir ganska \"low resolution\". När man faktiskt ska rita en graf brukar man inte skriva ut alla punkter. Vi gör det så här istället:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAAD4CAYAAADFJPs2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAiC0lEQVR4nO3deXxU5d338c81k40kJCEr2SDsOwQCiMgqoLig1VaxVmu1fbht9a5d7u6L3exj11u7WGvV1j610roLuIGGHVnCJiEQEpaELGQj+zqZ6/kjiY2IZJLMzHVm5vd+vfJ6JWYy8zXkO+c651znOkprjRDCv9lMBxBCeJ4UXYgAIEUXIgBI0YUIAFJ0IQJAkCeeND4+XmdkZPT5uKamJiIiIjwRoV+skMMKGSSH7+fIycmp0lonfOQbWmu3f2RlZWlXZGdnu/Q4T7NCDitk0FpyXMjXcgD79EU6KUN3IQKAFF2IACBFFyIASNGFCABSdCECgBRdiAAgRRciAHhkwkxfGlo7+PuuM4TWdrLERAAhfISj08nDbxwj3dk5qOcxskUPttv43Tsn2FPuMPHyQviM90vqeHL7Kc41DW7dCCNFDwu2MztjGEerB/cuJYS/21lYDcDEOPugnsfYPvr8MfGcbdRUNbaZiiCE5e0srGLi8KFEhahBPY/BoscBsKv7HUsI8WGtHZ3sO32e+WPiB/1cxoo+LTWaIUH/GZoIIT7sQFEtbQ7nBxvFwTBW9CC7jQnD7OwqrDIVQQhL21lYhd2muGx07KCfy+h59Elxdk5XN1NS22IyhhCWtLOwmmmp0QwNCx70cxkt+uTuI4k7CmSrLkRvTW0ODhXXcsXYwQ/bwXDRUyMVcREhckBOiAvsOVWDw6ndciAODBfdphTzx8azvaAKLTeSEOID2wuqCA2ykTVymFuez/hc9wVj46hsaONERaPpKEJYxo6CKuZkxBIWPLiJMj2MF71naCL76UJ0qWxo41h5A/PdtH8OFih6emw4I+PCpehCdNvZfcp5wVj37J+DBYoOcMXYeN47WYOj02k6ihDG7SioInpIMFNSot32nJYo+oKx8TS2OTh0ts50FCGM0lqz/UQV88fEYbcNbn57b5Yo+uWj41AKtp+Q4bsIbKermymta2W+G4ftYJGiD4sIYUpKlOyni4C3/UQl4N79c7BI0QEWjktgf9F5GttkMQoRuLadqCJt2BAy4sLd+rzWKfrYeBxOzXsyS04EKEenk12F1SwcF49S7ts/BxeLrpT6qlIqVyl1RCn1nFIqzK0pgKyMYYQF29guw3cRoA6draOhzcGCsR+9R+Jg9Vl0pVQq8GVgttZ6KmAHbnN3kNAgO3NHxbGtex9FiECz7UQlSuGW688v5OrQPQgYopQKAsKBUrcnoWv4XljZRKlctioC0PYTVUxLjWZYRIjbn1u5cjGJUuoB4CGgBXhba/2ZizxmDbAGICkpKWvt2rV9Pm9jYyORkZEffF3c4OQHO1q4Z2oIi9IGfw2uqy7MYYIVMkgOczlaHJr73mnm2lHBfGr8R4vuao6lS5fmaK1nf+QbF7uXcu8PYBjwLpAABAOvAHdc6mcGen90p9OpZ/9so77v2RyXft5drHAPbCtk0FpyXMhbOd7OLdcjv7Ve7yioHFQOBnF/9OXAKa11pda6A3gJmO/Cz/WbUoqFY+PZUVBFp1MuWxWBY2t+JeEhdmaPHPyyURfjStGLgHlKqXDVdcx/GZDnkTTAovEJnG/uILdUpsOKwLH1RCWXj44jJMgzZ7z7fFat9W7gBWA/8H73zzzhkTTAgnFdM4K25svRdxEYzlQ3caa6mUXj3X9arYdLbx9a6we11hO11lO11ndqrT1214X4yFCmpESxNV/Op4vAsLX7Go+F49w77bU3y8yM623R+K7psA2tHaajCOFxW/MrSRs2hFHxER57DWsWfVwCDqeWRSOF3+vonva6aHyC26e99mbJomeNHEZ4iJ2tMktO+Ln9Z7ou5FrkwWE7WLToIUE25o+JY0t+pawOK/za1hOV2G3K7defX8iSRQdYPD6B4poWTlU1mY4ihMdsya8ka8QwotxwN5ZLsXDRE4GuX4QQ/qiioZUjJfUsnuC502o9LFv0EXHhjI6PkKILv7Wt+xTyYg+eP+9h2aJD12m2XYXVtHZ0mo4ihNttya8kPjKUyclRHn8tSxd98YQE2hxOdp+qMR1FCLfqdGq2nahk0fh4bG5c7fXjWLro80Z1zf3dfLzCdBQh3Orw2VrON3d4ZdgOFi/6kBA780bHseW47KcL/7L5eNdqMovGSdEBWDohgZNVTZypltNswn9szq9kZnqMR1aTuRgfKHrXabbNslUXfqKqsY3DZ2s/+Nv2BssXPSM+glHxEWTLfrrwE1vzK9Ealk6Uon/Ikgldp9la2uU0m/B92ccrSRjqndNqPXyk6Im0OZy8d1KuZhO+zdHpZGt+JYvHJ3jltFoPnyj6ZaNiCQu2yfBd+LyDxbXUtXR4df8cfKToYcF2rhgTz7vHKuRqNuHTso9XYLepD5ZM8xafKDrAlZMSOXu+hYKKRtNRhBiwd/IqmJMxjOgh3rtvAfhQ0XuGOu8ck+G78E0ltS0cK2/gSi8ebe/hM0VPiRnCpOQo3pWiCx/V87d75cQkr7+2zxQdYNnERHLOnKeuWRaNFL4n+1gFI+PCGZPguUUgP45PFX3pxEQ6nZotspac8DEt7Z3sKKhi6YREjy4C+XF8quiZ6THERoTwbt4501GE6JedhVW0OZwsm+T9/XPwsaLbbYolExLYnF+Jo9NpOo4QLnvnWAURIXbmjvLMvdX64lNFB1g+KYna5g5yzpw3HUUIl2iteSfvHIvGJxAaZDeSweeKvnBcPMF2JafZhM84UlLPufo2lk3y/tH2Hj5X9KFhwcwbHcemo7KfLnzDprxz2FTX2gqm+FzRoWv4frKqicJKmSUnrG9T3jlmjRhGXGSosQw+WfSeI5fvyNF3YXFldS3kltazfLK5YTv4aNHThoUzcfhQNh2V/XRhbZvyuv5Glxs6rdbDJ4sOsGJyEvvO1FDT1G46ihAfa9PRc2TEhTMmIdJoDp8uulPL8F1YV0NrBzsLq1gxOcnIbLjefLbo01KjGR4VxkY5+i4sakt+JR2dmqumDDcdxXeLrpRixeQktp6olLXkhCVtPHqOuIgQZo0YZjqKa0VXSsUopV5QSh1TSuUppS73dDBXrJicRGuHk+0FVaajCPEhHZ1O3j1WwZUTE7F7cW24j+PqFv1R4E2t9URgBpDnuUiumzc6jqGhQWw8Wm46ihAfsvtkDQ2tDlYYPq3WI6ivByilooBFwOcAtNbtgCUOdYcE2VgyMZF38irodGpLvHMKAbDxaDlhwTYWeumWS31RfS22qJTKBJ4AjtK1Nc8BHtBaN13wuDXAGoCkpKSstWvX9vnijY2NREYO7rTDnjIHjx1q4ztzw5gQO7ALBtyRY7CskEFyuCeHU2u+vrmFUdE2vjwrzKs5li5dmqO1nv2Rb2itL/kBzAYcwGXdXz8K/PRSP5OVlaVdkZ2d7dLjLqWhtUOP+97r+sev5Q74OdyRY7CskEFryXGhgeQ4UHRej/zWev1iTrHXcwD79EU66co++lngrNZ6d/fXLwCzXHkX8obI0CAWjI3nrdxyWQpaWMKbR8oJsimWGVgb7uP0WXStdTlQrJSa0P2fltE1jLeMlVOGU1LbNadYCJO01rydW8680XFEh3t3SedLcfWo+38DzyqlDgOZwM89lmgAlk1KxKbgrVw5+i7MKqho5GRVE1dPsc7WHFwsutb6oNZ6ttZ6utb6E1prSy3vEhcZytxRsVJ0YdybR7r+Bq0wG643n50Zd6Grpwwn/1yjXKMujHozt5yZI2JIinLP0XZ38Zuir5za9Q7a844qhLcVVTeTW1rPtVOTTUf5CL8penL0EGaOiOGNI2Wmo4gA1fO317PRsRK/KTrAtVOTOVJST3FNs+koIgC9caScaanRpMeGm47yEX5V9J53UtmqC28rrW3hYHGtJbfm4GdFT48NZ2pqFG/Ifrrwsp5jQ9dI0b3jmqnJHCiqpbS2xXQUEUDeOFLGhKShjDa8ZNTH8buiXzet64jn6+/L8F14R3ldK3tPn+e66dY72t7D74qeER/BlJQoNkjRhZf0HBO6dpoU3auundY1fC+R4bvwgg2Hy5g4fChjE605bAc/LXrP8P0N2aoLDyuva2XfmfMf/M1ZlV8WvWf4vv6wFF14Vs+xoGstvH8Oflp0gOumJ3OwuFYmzwiP2vB+17Dd9A0a+uK3Rb9+WgqAHJQTHnP2fDM5Z86zakaK6Sh98tuij4gLZ0Z6DOsOlZqOIvzUhu5dw+stPmwHPy46wKrpyeSW1nNSLl0VHrD+cBkz0qIZGRdhOkqf/Lro109PQSnkoJxwu1NVTbxfUucTw3bw86IPjw5jzshYXjtUKgtHCrda371LaOXZcL35ddEBVs1IpqCikbyyBtNRhJ/QWvPaoVLmZsSSHD3EdByX+H3Rr52WjN2meE0Oygk3yStr4ERFIzdk+sawHQKg6HGRoSwcF8+6Q6U4nTJ8F4P36qESgmzK0nPbL+T3RQf4RGYqJbUt7DtjqcVrhQ9yOjXrDpayeHwCsREhpuO4LCCKvmJyEmHBNl49WGI6ivBxe0/XUFrX6lPDdgiQokeEBrFi8nA2vF9Gu8NpOo7wYa8eKiU8xG6Z2yG7KiCKDvCJzBRqmzvYml9pOorwUW2OTjYcLmPF5CTCQ/q847ilBEzRF3XvU718QIbvYmCyj1VS19LBTTNTTUfpt4AperDdxqrpyWzMO0ddS4fpOMIHvXzgLPGRoSwYG286Sr8FTNEBbpqVRrvDKQtSiH6rbW7n3WMV3JiZQpDd92rje4kHYUZaNKPjI3hJhu+in9YfLqOjU/vksB0CrOhKKW6amcqeUzWyIIXol5cPlDAuMZIpKVGmowxIQBUd4KZZXe/Ir8hWXbjodFUTOWfOc/OsNJRSpuMMSMAVPW1YOJePjuOF/Wflijbhkhf3n8Wm8NlhOwRg0QE+lZXGmepmmRIr+uTUmpf2l7BwXALDo611z/P+CMiir5w6nPAQOy/mnDUdRVjcsRonJbUtfDIrzXSUQQnIokeEBnHttGTWHy6jpb3TdBxhYdtLHAwNC+IqH5vyeiGXi66UsiulDiil1nsykLd8KiuNxjYHb+bKOXVxcQ2tHew75+D66SmEBdtNxxmU/mzRHwDyPBXE2+ZmxDIiNpx/75Xhu7i49YfLaO+EW2f79rAdXCy6UioNuA540rNxvMdmU9w6O41dJ6upaJYr2sRH/WtvMamRisz0GNNRBs3VS3AeAb4JDP24Byil1gBrAJKSkti8eXOfT9rY2OjS4zwlpd2JAt491UyiwRxg/nchOT6spMHJweIWbh6l2bJli7EcPQb9+9BaX/IDuB54rPvzJcD6vn4mKytLuyI7O9ulx3nSXU/v1jMf3KAdnU6jOazwu9BacvT46bpcPfa7G/Srb71rNEcPV38fwD59kU66MnS/ArhBKXUaWAtcqZT6x8DfWqzl1tnp1LRqtp6Q69RFl3aHk5cPlLB8UhJRIb45E+5CfRZda/0drXWa1joDuA14V2t9h8eTecnySUkMDYG1e4pMRxEWsfHoOaqb2lk9J910FLcJyPPovYUE2ViQGsymvAoq6ltNxxEW8NyeIlJjhrBwXILpKG7Tr6JrrTdrra/3VBhTFqcF0enUPC8z5QLemeomthdUsXpOOnabfwzbQbboAAyPsHH56DjW7i2Std8D3L/2FmNTXcdu/IkUvdttc9Mprmlhe0GV6SjCkI5OJ8/nnOXKiYk+fQHLxUjRu62cOpzYiBCe3X3GdBRhyNu556hsaOP2y0aYjuJ2UvRuoUF2bpmdxqa8Csrr5KBcIHp29xlSY4aweHyi6ShuJ0Xv5fa5I+h0atbulVNtgaawspGdhdXcftkIvzoI10OK3svIuAgWjU9g7Z5iHJ0y/z2QPPteEcF25VfnznuTol/gjstGUF7fyqa8c6ajCC9pae/khZxiVk5NJj4y1HQcj5CiX+DKiYmkxgzh77vkoFygePVgCfWtDu6cN9J0FI+Rol8gyG7jM/NGsLOwmhPnGkzHER6mteaZXWeYlBzFnIxhpuN4jBT9Im6bM4KQIBvP7DptOorwsL2nz5NXVs9dl4/02aWcXSFFv4jYiBBumJHCS/tLqG+V+7T5s2d2nSYqLIgbM313KWdXSNE/xl2XZ9Dc3snz+2T+u78qr2vlrSPlrJ6TzpAQ314Tri9S9I8xLS2arJHDeGbnaTpl/rtf+vuu0zi15rOXZ5iO4nFS9Ev4/IJRFNU0846cavM7Le2d/HNPEVdNHk56bLjpOB4nRb+EqyYnkRozhKd3nDIdRbjZywdKqG3u4J4Fo0xH8Qop+iUE2W3cNX8k752sIbe0znQc4SZaa57ecYqpqf59Sq03KXofVs8ZQXiInae2y1bdX2zJr6SgopF7rhjl16fUepOi9yF6SDC3zk5n3aFSuarNT/xl20mGR4Vx/fQU01G8Rorugs8vGEWnU/PXnbJV93VHSurYUVDN3VdkEBIUOH/+gfN/OgjpseFcMy2Zf75XRINMoPFpT247SWRoEJ/2w8UlLkWK7qI1C0fT0ObgX3uLTUcRA1RS28K6w2XcNiedqLBg03G8SoruohnpMVw2KpYnt52izSG3WvZFf9l6EgXcHSCn1HqTovfDl5aOpby+lVcPlJqOIvqppqmdtXuL+MTMVFJjhpiO43VS9H5YNC6eKSlRPL6lUKbF+pi/7ThFm8PJvYtHm45ihBS9H5RSfHHJGE5WNfFWbrnpOMJFjW0Ontl1hqsmJzE28WNvCOzXpOj9dM3UZDLiwvljdkHP3WaFxT373hnqWjr44pKxpqMYI0XvJ7tN8aUlY8ktrSf7eIXpOKIPLe2d/GXbSRaOiyczPcZ0HGOk6ANw06yuAzq/e0e26lb33J4iqhrb+e8rx5mOYpQUfQCC7Ta+uGQMB4tr5RZOFtba0cmftxZy2ahY5o6KNR3HKCn6AN0yO43hUWE8sumEbNUt6t/7ijlX38aXlwX21hyk6AMWGmTnvqVjyDlznm0nZKtuNa0dnfwxu4C5GbHMHxNnOo5xUvRBuHVOOqkxQ/jtxnzZqlvMP3cXca6+ja9dNT5gLkW9FCn6IIQG2bn/yrEcLK5l8/FK03FEt5b2Th7bXMj8MXHMGy1bc5CiD9qnstJIjx3CbzYexymz5SzhmV2nqWps46srxpuOYhlS9EEKttv4yrLxHCmp540jMlvOtLqWDv60uZAlExKYkxHYR9p767PoSql0pVS2UipPKZWrlHrAG8F8ySdmpjI+KZLfvH1c7sJq2BNbC6lr6eAbV08wHcVSXNmiO4Cva60nAfOA+5RSkz0by7fYbYpvXD2Rk1VNvJAjN3wwpaKhlae3n2bVjBSmpESbjmMpfRZda12mtd7f/XkDkAf49/1rBmD5pERmjYjhfzfl09zuMB0nIP3unRN0dDr5muybf4Tqz2khpVQGsBWYqrWuv+B7a4A1AElJSVlr167t8/kaGxuJjIzsT16PcFeOE+c7eWh3KzePC+aGMSFGMgyWr+YobXTy/R0tLE0P4s7J7rvHua/9PpYuXZqjtZ79kW9orV36ACKBHODmvh6blZWlXZGdne3S4zzNnTnW/H2vnvyDN3RFfauxDIPhqzk+/7e9esoP39RVDf37vbs7h6e4mgPYpy/SSZeOuiulgoEXgWe11i/1440o4Hxr5UTaHE4e2ZRvOkrAeO9kNZvyzvHFJWOIi3Tf1tyfuHLUXQFPAXla6996PpJvG50QyR3zRvLcniKOldf3/QNiUDqdmp+sO0pydBj3XBF4a8G5ypUt+hXAncCVSqmD3R/XejiXT/vK8nFEDQnmJ+uOytRYD3t+XzFHy+r5zrWT/P7Wx4PhylH37VprpbWerrXO7P543RvhfFVMeAhfWzGenYXVvH1U7sTqKfWtHfzqrePMHjmMVdOTTcexNJkZ5yG3zx3B+KRIfrbhKK0dsjy0Jzy66QQ1ze08uGqKXLjSBym6hwTZbfzohikU17Tw2OZC03H8zrHyev628zS3zRnBtDSZHNMXKboHzR8Tzw0zUnh8SyGnq5pMx/EbWmt+8MoRosKC+KZMdXWJFN3Dvn/dJELsNn74Wq4cmHOTF/eXsPf0eb59zUSGRfRvYlKgkqJ7WGJUGF9bMZ6t+ZWsO1xmOo7Pq25s46ENR5k1IoZbstJNx/EZUnQvuGt+BtPTovnJulxqm9tNx/FpP9uQR2Obg4c/OR2bTQ7AuUqK7gV2m+Lhm6dzvrmDhzbkmY7js7bmV/LygRLuXTyG8UmBeceVgZKie8nklCj+z8LRPJ9zli35suxUfzW0dvCdl95ndHwE9y0N3DuuDJQU3Yu+snwcYxIi+PaLh6lv7TAdx6f8/PVjlNW18KtbZhAWLDPg+kuK7kVhwXZ+c2sm5+pbeWi9DOFdte1EJc/tKeILC0eTNXKY6Tg+SYruZZnpMfzX4jH8a18xG2V6bJ/qmjv4xvOHGZ0QIQtKDIIU3YCvLB/H5OQovvXiYSoaWk3HsSytNd995X2qGtt4dPVMGbIPghTdgNAgO4/elklTm4NvvnBYJtJ8jJf2l7DhcBlfXTFeprkOkhTdkHFJQ/nedZPYfLySJ7edMh3Hcsoanfzg1SPMHRXLvYvHmI7j86ToBt05byRXT0niF28eo6BWrnDr0drRyWOH2ggNsvHobZnYZWLMoEnRDVJK8ctPzmB4dBh/OtjG+SaZNQfw43W5FDc4+e3qTJKjh5iO4xek6IZFhwfzh9tnUdem+fLaA3QG+G2d1u4p4rk9xVw3KpilExJNx/EbUnQLyEyP4c7JIWw7UcWv3z5uOo4xB4rO88NXc1k4Lp5Pjg82HcevSNEtYnF6MLdfNoI/bS7k1YMlpuN4XXldK/f+I4fEqFB+d9tMbLJijFtJ0S3kR6umMHdULN944TA5Z2pMx/Ga5nYHn39mL42tDv7y2dlyjbkHSNEtJCTIxp/vyCI5Oow1f8+hqLrZdCSP63RqHlh7kLyyev5w+ywmJUeZjuSXpOgWMywihKc/N4dOrbnz6d1UNrSZjuQxWmu+/8r7bDx6jgdXTWHpRDn45ilSdAsakxDJ05+bQ0V9G5/76x4a/PRKt99uzOe5PcXct3QMd83PMB3Hr0nRLWrWiGE8dscsjpc38Lm/7qWpzb/u0PrY5gJ+/24Bq2en8z9XyQKPniZFt7ClExL5/adncrC4lrv/ttdvbsf85LaT/PLN49yYmcLPb54ma7J7gRTd4q6ZlswjqzPZd7qGO5/aQ12L7w7jtdb84d0T/GxDHtdNT+Y3t8yQ6a1eIkX3AatmpPCH22dx+Gwtn37iPaoafe8Andaah984xq/fzufmmak8ujqTILv8+XmL/KZ9xLXTkvnLZ2dzsqqRmx7bQUFFo+lILmtzdPLA2oP8eetJ7pw3kl/fMkNK7mXy2/YhSyYksnbN5bS0d3LzYzvYfqLKdKQ+VTa0cceTu3ntUCnfXDmBn9w4RZZpNkCK7mMy02N4+UtXkBQVxmef3s3jWwotu3DF/qLzrPr9dg6freN3n57Jl5aMlQNvhkjRfVB6bDiv3HcF10xN5uE3jvGFZ/ZZar/d6dT8eUshq/+8i+AgxUtfms8NM1JMxwpoUnQfFREaxB9un8mDqyazraCKlY9s5a3cctOxKKpu5jNP7ub/vnGMZROTWHf/AqakyDJQpgWZDiAGTinF3VeM4vIxcXz1X4f4r/+Xw1WTk3jwhimkxnh3wYZ2h5Ontp/i0XfyCbLZ+MUnp3Hr7HQZqluEFN0PTBwexWv3X8GT27qKduWvN3PPglHcu3gM0UM8e12306l5/UgZv3zzOEU1zVw9JYkf3TBFVoaxGCm6nwi22/jikjGsmpHMb97O50+bC/nHrjPccflI7p6fQWJUmFtfr93hZP3hUh7fUkj+uUYmDh/K3+6ewxJZFcaSXCq6Umol8ChgB57UWj/s0VRiwNKGhfO/qzP5wsJRPJZdyONbCnli60mWTUzk5llpLB6fwJCQga2PrrXm8Nk61h8u5cX9JdQ0tTMhaSiPrM5k1YwUmeVmYX0WXSllB/4IrADOAnuVUq9prY96OpwYuCkp0fzxM7M4XdXEc3uLeGHfWd4+eo6wYBvzRscxJyOWzPQYxiZGkjg09KL70o1tDk5WNnK0tJ49p2vYVVhNWV0rQTbF8klJ3DY3nUXjEuS8uA9wZYs+FyjQWp8EUEqtBW4EpOg+ICM+gu9cM4n/uWoCe07V8FZuOTsLq9l8/D9r04UE2YgNDyEyLIjm5maC9mRzvqmdhl5XzMVGhDA3I5avX5XEsomJsgqMj1F9TbZQSn0KWKm1/kL313cCl2mt77/gcWuANQBJSUlZa9eu7fPFGxsbiYyMHGB097FCDm9naGjXFDc4KW10Ut2qaWzXtDg0nQ4HoSFBDA1RRIcokiNtpEbaSApXXj2CboV/E1/MsXTp0hyt9eyPfENrfckP4Ba69st7vr4T+P2lfiYrK0u7Ijs726XHeZoVclghg9aS40K+lgPYpy/SSVcmzJwF0nt9nQaUuvBzQgiLcKXoe4FxSqlRSqkQ4DbgNc/GEkK4U58H47TWDqXU/cBbdJ1ee1prnevxZEIIt3HpPLrW+nXgdQ9nEUJ4iFzUIkQAkKILEQCk6EIEACm6EAGgz5lxA3pSpSqBMy48NB6wwsJnVshhhQwgOS7kazlGaq0TLvyPHim6q5RS+/TFpusFYA4rZJAc/ptDhu5CBAApuhABwHTRnzD8+j2skMMKGUByXMgvchjdRxdCeIfpLboQwguk6EIEAKNFV0r9VCl1WCl1UCn1tlLKyO08lFK/Ukod687yslIqxlCOW5RSuUopp1LK66d0lFIrlVLHlVIFSqlve/v1uzM8rZSqUEodMfH63RnSlVLZSqm87n+PBwzlCFNK7VFKHerO8eMBP9nFVqPw1gcQ1evzLwOPG8pxFRDU/fkvgF8YyjEJmABsBmZ7+bXtQCEwGggBDgGTDfwOFgGzgCMm/g26MyQDs7o/HwrkG/pdKCCy+/NgYDcwbyDPZXSLrrWu7/VlBGDkyKDW+m2tdc9KiO/RtYqOiRx5WuvjfT/SIz5YBFRr3Q70LALqVVrrrUCNt1/3ggxlWuv93Z83AHlAqoEcWmvdc3/s4O6PAXXE+D66UuohpVQx8Bngh6bzAPcAb5gOYUAqUNzr67MY+OO2GqVUBjCTrq2pide3K6UOAhXARq31gHJ4vOhKqU1KqSMX+bgRQGv9Pa11OvAscP+ln81zObof8z3A0Z3FWA5DLrbEa0Cfe1VKRQIvAl+5YPTpNVrrTq11Jl2jzLlKqakDeR6P35JJa73cxYf+E9gAPGgih1LqLuB6YJnu3ikykcMgWQS0F6VUMF0lf1Zr/ZLpPFrrWqXUZmAl0O8DlaaPuo/r9eUNwDFDOVYC3wJu0Fo3m8hgAbIIaDfVtYD9U0Ce1vq3BnMk9JwBUkoNAZYzwI6YvnrtRbqOMjvpuqz1Xq11iYEcBUAoUN39n97TWt9rIMdNwO+BBKAWOKi1vtqLr38t8Aj/WQT0IW+9dq8MzwFL6Los8xzwoNb6KS9nWABsA96n628T4Lu6a+1Eb+aYDjxD17+HDfi31vonA3ouk0UXQniH8aPuQgjPk6ILEQCk6EIEACm6EAFAii5EAJCiCxEApOhCBID/DxLK4dVMMP4MAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "x = np.linspace(-3, 3, 100) # Skapar en lista med 100 värden från -3 till 3\n", "y = x**2 # Beräknar en lista med y-värden utgående från de 100 x-värdena. ** är potensfunktionen.\n", "\n", "fig = plt.figure(figsize = (4,4))\n", "plt.plot(x, y)\n", "\n", "plt.grid()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "plt.plot-kommandot kommer till användning när vi ska åskådliggöra statistiktabeller. Istället för att konstruera x- och y-listorna som vi gjorde nyss kan vi använda värden ur tabellen.\n", "\n", "I början av dokumentet hämtade vi in en tabell över världens energiproduktion. **Se till att du har kört den cellen.** Om vi nu vill ha en tabell som visar mängden oljekraft som producerats genom åren kan vi ta x-och y-listorna från tabellen. Tabellen heter *energi*, så för att ta en kolumn ur tabellen kan vi skriva kommandot **energi['KolumnensNamn']**\n", "\n", "````python\n", "year = energi['Year']\n", "oil = energi['Oil (TWh)']\n", "````\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Övning:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Funktion\n", "\n", "Välj en matematisk funktion att avbilda i ett koordinatsystem som i exemplen ovan. Välj en på egen hand, eller ta ett av förslagen nedan.\n", "\n", "- Sinusfunktionen. Du kan använda **np.sin(x)** för att beräkna sinusvärden.\n", "- Den naturliga exponentialfunktionen. Du kan använda **np.e** för att få nepers tal.\n", "- En logaritmfunktion. Du kan exempelvis använda funktionen **np.log(x)** för den naturliga logaritmen, eller **np.log10(x)** för logaritmen med bas 10.\n", "\n", "\n", "#### Statistik\n", "\n", "1. I cellen nedan skapar vi x- och y-listor (year och oil). Använd dem för att skapa en graf med plt.plot(). \n", "2. Skapa fler y-listor (wind, solar...). Skriv fler plt.plot-kommandon med olika y-listor och samma x-lista (year). De kan visas i samma diagram. \n", "3. Lägg till titel och namnge koordinataxlarna." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "# Koda här (Funktion)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "# Koda här (Statistik)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Histogram med plt.hist()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Till skillnad från de tidigare funktionerna använder plt.hist() bara *en* värdelista. För att testa funktionen skapar vi en lista med slumpmässiga värden." ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "scrolled": true }, "outputs": [], "source": [ "import numpy.random as rand # Random-paketet innehåller slumpfunktioner\n", "histlist = [] # Vi gör en tom lista, och fyller den sen.\n", "\n", "for i in range(1000): # Detta är en for-loop. range(n) betyder att den upprepas n gånger.\n", " i = rand.randint(1,11)*rand.randint(1,11) # Vi skapar ett slumpvärdevärde som produkten av två heltal från 1 till 10.\n", " histlist.append(i) # .append-kommandot lägger till värdet i listan.\n", "\n", "# Med print-kommandot kan man titta på listan.\n", "# Du kan ta bort #-tecknet om du vill:\n", "# print(histlist)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Vi har en slumpmäsigt vald lista. Vi använder kommandot plt.hist utan extra parametrar. Då skapas ett histogram med 10 staplar, som börjar vid det lägsta värdet och slutar vid det högsta." ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAPr0lEQVR4nO3dX4wdZ3nH8e8POzV/K5JmExnb6rrIbXGQcKqVmzZVlRLUmKSqw0UqRwL5IpK5CGqokCobLoALS67En3LRIBmSYrU0qQWhsQiipC4VQkIx6zSFOI4bl7jxYtdeSimhFwabpxdnop7au97jPXuy2Xe/H2l1Zt6ZOfM8sf3bybtzZlNVSJLa8qrFLkCStPAMd0lqkOEuSQ0y3CWpQYa7JDVo5WIXAHDttdfW+Pj4YpchSUvK4cOHf1BVYzNte0WE+/j4OJOTk4tdhiQtKUn+fbZtTstIUoPmDPckr05yKMm/JDmS5KPd+DVJHk/yXPd6dd8xu5IcT3IsyW2jbECSdKlBrtzPAW+vqrcBm4AtSW4CdgIHq2oDcLBbJ8lGYBtwA7AFuD/JihHULkmaxZzhXj0/6Vav6r4K2Ars68b3AXd2y1uBh6vqXFU9DxwHNi9k0ZKkyxtozj3JiiRPAWeBx6vqCeD6qjoN0L1e1+2+BjjZd/hUN3bxe+5IMplkcnp6eogWJEkXGyjcq+pCVW0C1gKbk7z1MrtnpreY4T33VtVEVU2Mjc14J48kaZ6u6G6ZqvoR8E/05tLPJFkN0L2e7XabAtb1HbYWODVsoZKkwQ1yt8xYkjd2y68B3gE8CxwAtne7bQce7ZYPANuSrEqyHtgAHFrguiVJlzHIh5hWA/u6O15eBeyvqi8n+RawP8k9wAvAXQBVdSTJfuAZ4Dxwb1VdGE35kqSZ5JXwyzomJiZqmE+oju98bAGrGdyJPXcsynklCSDJ4aqamGmbn1CVpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUoDnDPcm6JF9PcjTJkST3deMfSfL9JE91X7f3HbMryfEkx5LcNsoGJEmXWjnAPueBD1TVk0neABxO8ni37ZNV9bH+nZNsBLYBNwBvAv4hya9W1YWFLFySNLs5r9yr6nRVPdktvwgcBdZc5pCtwMNVda6qngeOA5sXolhJ0mCuaM49yThwI/BEN/S+JN9J8mCSq7uxNcDJvsOmmOGbQZIdSSaTTE5PT1955ZKkWQ0c7kleD3wReH9V/Rj4NPBmYBNwGvj4S7vOcHhdMlC1t6omqmpibGzsSuuWJF3GQOGe5Cp6wf75qnoEoKrOVNWFqvo58Bn+b+plCljXd/ha4NTClSxJmssgd8sEeAA4WlWf6Btf3bfbu4Cnu+UDwLYkq5KsBzYAhxauZEnSXAa5W+Zm4D3Ad5M81Y19ELg7ySZ6Uy4ngPcCVNWRJPuBZ+jdaXOvd8pI0strznCvqm8y8zz6Vy5zzG5g9xB1SZKG4CdUJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNWjOcE+yLsnXkxxNciTJfd34NUkeT/Jc93p13zG7khxPcizJbaNsQJJ0qUGu3M8DH6iqtwA3Afcm2QjsBA5W1QbgYLdOt20bcAOwBbg/yYpRFC9Jmtmc4V5Vp6vqyW75ReAosAbYCuzrdtsH3NktbwUerqpzVfU8cBzYvMB1S5Iu44rm3JOMAzcCTwDXV9Vp6H0DAK7rdlsDnOw7bKobu/i9diSZTDI5PT09j9IlSbMZONyTvB74IvD+qvrx5XadYawuGajaW1UTVTUxNjY2aBmSpAEMFO5JrqIX7J+vqke64TNJVnfbVwNnu/EpYF3f4WuBUwtTriRpEIPcLRPgAeBoVX2ib9MBYHu3vB14tG98W5JVSdYDG4BDC1eyJGkuKwfY52bgPcB3kzzVjX0Q2APsT3IP8AJwF0BVHUmyH3iG3p0291bVhYUuXJI0uznDvaq+yczz6AC3znLMbmD3EHVJkobgJ1QlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMGeZ67ZjG+87FFOe+JPXcsynklLR1euUtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQXOGe5IHk5xN8nTf2EeSfD/JU93X7X3bdiU5nuRYkttGVbgkaXaDXLl/Dtgyw/gnq2pT9/UVgCQbgW3ADd0x9ydZsVDFSpIGM+cjf6vqG0nGB3y/rcDDVXUOeD7JcWAz8K35l6iLLdajhsHHDUtLxTBz7u9L8p1u2ubqbmwNcLJvn6lu7BJJdiSZTDI5PT09RBmSpIvNN9w/DbwZ2AScBj7ejWeGfWumN6iqvVU1UVUTY2Nj8yxDkjSTeYV7VZ2pqgtV9XPgM/SmXqB3pb6ub9e1wKnhSpQkXal5hXuS1X2r7wJeupPmALAtyaok64ENwKHhSpQkXak5f6Ca5CHgFuDaJFPAh4FbkmyiN+VyAngvQFUdSbIfeAY4D9xbVRdGUrkkaVaD3C1z9wzDD1xm/93A7mGKkiQNx0+oSlKDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGzfnIX6nfYv1ybn8xt3RlvHKXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaNGe4J3kwydkkT/eNXZPk8STPda9X923bleR4kmNJbhtV4ZKk2Q1y5f45YMtFYzuBg1W1ATjYrZNkI7ANuKE75v4kKxasWknSQOYM96r6BvDDi4a3Avu65X3AnX3jD1fVuap6HjgObF6YUiVJg5rvnPv1VXUaoHu9rhtfA5zs22+qG7tEkh1JJpNMTk9Pz7MMSdJMFvoHqplhrGbasar2VtVEVU2MjY0tcBmStLzNN9zPJFkN0L2e7cangHV9+60FTs2/PEnSfMw33A8A27vl7cCjfePbkqxKsh7YABwarkRJ0pWa89fsJXkIuAW4NskU8GFgD7A/yT3AC8BdAFV1JMl+4BngPHBvVV0YUe2SpFnMGe5Vdfcsm26dZf/dwO5hipIkDcdPqEpSgwx3SWrQnNMy0ivB+M7HFu3cJ/bcsWjnlubLK3dJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktSglYtdgPRKN77zsUU574k9dyzKedWGocI9yQngReACcL6qJpJcA/wtMA6cAP6oqv5ruDIlSVdiIaZlfq+qNlXVRLe+EzhYVRuAg926JOllNIo5963Avm55H3DnCM4hSbqMYcO9gK8lOZxkRzd2fVWdBuher5vpwCQ7kkwmmZyenh6yDElSv2F/oHpzVZ1Kch3weJJnBz2wqvYCewEmJiZqyDokSX2GunKvqlPd61ngS8Bm4EyS1QDd69lhi5QkXZl5h3uS1yV5w0vLwO8DTwMHgO3dbtuBR4ctUpJ0ZYaZlrke+FKSl97nb6rqq0m+DexPcg/wAnDX8GVKkq7EvMO9qr4HvG2G8f8Ebh2mKEnScHz8gCQ1yMcPSLqEj1xY+rxyl6QGGe6S1CCnZaRXqMWaGlEbDHdJrxjO9S8cp2UkqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGrRyVG+cZAvwKWAF8Nmq2jOqc0nSMMZ3PrZo5z6x546RvO9IrtyTrAD+AngnsBG4O8nGUZxLknSpUU3LbAaOV9X3quqnwMPA1hGdS5J0kVFNy6wBTvatTwG/2b9Dkh3Ajm71J0mOXcH7Xwv8YKgKl6bl2Pdy7BmWZ9/LsWfyZ0P1/cuzbRhVuGeGsfp/K1V7gb3zevNksqom5nPsUrYc+16OPcPy7Hs59gyj63tU0zJTwLq+9bXAqRGdS5J0kVGF+7eBDUnWJ/kFYBtwYETnkiRdZCTTMlV1Psn7gL+ndyvkg1V1ZAFPMa/pnAYsx76XY8+wPPtejj3DiPpOVc29lyRpSfETqpLUIMNdkhq05MI9yZYkx5IcT7JzsesZhSTrknw9ydEkR5Lc141fk+TxJM91r1cvdq2jkGRFkn9O8uVuvem+k7wxyReSPNv9mf9W6z0DJPmT7u/300keSvLq1vpO8mCSs0me7hubtccku7psO5bktmHOvaTCfRk91uA88IGqegtwE3Bv1+dO4GBVbQAOdustug842rfeet+fAr5aVb8OvI1e7033nGQN8MfARFW9ld6NF9tor+/PAVsuGpuxx+7f+Dbghu6Y+7vMm5clFe4sk8caVNXpqnqyW36R3j/2NfR63dfttg+4c1EKHKEka4E7gM/2DTfbd5JfBH4XeACgqn5aVT+i4Z77rARek2Ql8Fp6n4Vpqu+q+gbww4uGZ+txK/BwVZ2rqueB4/Qyb16WWrjP9FiDNYtUy8siyThwI/AEcH1VnYbeNwDgukUsbVT+HPhT4Od9Yy33/SvANPCX3VTUZ5O8jrZ7pqq+D3wMeAE4Dfx3VX2NxvvuzNbjgubbUgv3OR9r0JIkrwe+CLy/qn682PWMWpI/AM5W1eHFruVltBL4DeDTVXUj8D8s/amIOXXzzFuB9cCbgNcleffiVrXoFjTfllq4L5vHGiS5il6wf76qHumGzyRZ3W1fDZxdrPpG5GbgD5OcoDfl9vYkf03bfU8BU1X1RLf+BXph33LPAO8Anq+q6ar6GfAI8Nu03zfM3uOC5ttSC/dl8ViDJKE3B3u0qj7Rt+kAsL1b3g48+nLXNkpVtauq1lbVOL0/23+sqnfTcN9V9R/AySS/1g3dCjxDwz13XgBuSvLa7u/7rfR+ttR63zB7jweAbUlWJVkPbAAOzfssVbWkvoDbgX8F/g340GLXM6Ief4fe/459B3iq+7od+CV6P11/rnu9ZrFrHeF/g1uAL3fLTfcNbAImuz/vvwOubr3nru+PAs8CTwN/BaxqrW/gIXo/U/gZvSvzey7XI/ChLtuOAe8c5tw+fkCSGrTUpmUkSQMw3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KD/hf6HgSIYcdylwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.hist(histlist)\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Detta är kanske inte ett så tydligt histogram. Det finns några enkla saker vi kan göra för att snygga till det. Vi lägger till informativa benämningar för axlarna med xlabel och ylabel, och använder följande parametrar till plt.hist().\n", "\n", "**bins = *antal*** bestämmer antalet staplar. 10 staplar används om inget värde anges. \n", "\n", "**range=(*lower, upper*)** bestämmer var den första stapeln börjar och den sista slutar, om man inte vill använda de automatiskt valda gränserna.\n", "\n", "**edgecolor = 'black'** kan användas för att lättare urskilja staplarna. Man kan även använda kortversionen **ec = 'k'**\n", "\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAATPElEQVR4nO3df/BddX3n8efLBNEijrAEjEkktJOlwrZGG6muna3KDiBLG5zVbWhrY5fdtDNQseNMgbKj7OwwIzMV224Xd2NBMquCDFqNmY6VZnUdp1Mw0FQSYmqWHyESky+1FfwxEcJ7/7jne+Yavsn3Jvmee/O99/mYuXPP+dxz7nl/Jsl95fz6nFQVkiQBvGjUBUiSThyGgiSpZShIklqGgiSpZShIkloLR13A8TjjjDNq+fLloy5DkuaVBx544KmqWjTTZ/M6FJYvX86WLVtGXYYkzStJHj/cZx4+kiS1DAVJUstQkCS1DAVJUstQkCS1OguFJMuSfDnJjiTbk1zTtN+Y5NtJtjavS/vWuT7JriQ7k1zcVW2SpJl1eUnqc8D7q+rBJKcCDyS5t/nsI1X1R/0LJzkPWAOcD7wK+Osk/7KqDnZYoySpT2d7ClW1t6oebKafAXYAS46wymrgrqo6UFWPAruAC7qqT5L0QkM5p5BkOfA64L6m6eok30hye5LTmrYlwBN9q+1hhhBJsi7JliRbpqamuixbkiZO56GQ5GXAZ4D3VdXTwEeBnwFWAnuBD08vOsPqL3gCUFWtr6pVVbVq0aIZ79Ie2OKlrybJ0F+Ll776uOqWpK50OsxFkpPoBcInq+qzAFW1r+/zjwGbmtk9wLK+1ZcCT3ZZ33e+/QRnX7tp9gXn2OM3Xzb0bUrSILq8+ijAbcCOqrqlr31x32LvALY10xuBNUlOTnIOsAK4v6v6JEkv1OWewpuBdwMPJdnatP0hcEWSlfQODT0G/A5AVW1PcjfwML0rl67yyiNJGq7OQqGqvsbM5wn+8gjr3ATc1FVNkqQj845mSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktToLhSTLknw5yY4k25Nc07SfnuTeJN9q3k/rW+f6JLuS7ExycVe1SZJm1uWewnPA+6vqNcAbgauSnAdcB2yuqhXA5mae5rM1wPnAJcCtSRZ0WJ8k6RCdhUJV7a2qB5vpZ4AdwBJgNbChWWwDcHkzvRq4q6oOVNWjwC7ggq7qkyS90FDOKSRZDrwOuA84q6r2Qi84gDObxZYAT/SttqdpO/S71iXZkmTL1NRUp3VL0qTpPBSSvAz4DPC+qnr6SIvO0FYvaKhaX1WrqmrVokWL5qpMSRIdh0KSk+gFwier6rNN874ki5vPFwP7m/Y9wLK+1ZcCT3ZZnyTpJ3V59VGA24AdVXVL30cbgbXN9Frg833ta5KcnOQcYAVwf1f1SZJeaGGH3/1m4N3AQ0m2Nm1/CHwIuDvJlcBu4F0AVbU9yd3Aw/SuXLqqqg52WJ8k6RCdhUJVfY2ZzxMAXHiYdW4CbuqqJknSkXlHsySpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSp1eWAeDqcBSfRG0R2uF65ZBl79+we+nYlzR+GwigcfJazr9009M0+fvNlQ9+mpPnFw0eSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqDRQKSa5J8vL03JbkwSQXzbLO7Un2J9nW13Zjkm8n2dq8Lu377Poku5LsTHLxsXdJknSsBt1T+I9V9TRwEbAI+G3gQ7OscwdwyQztH6mqlc3rLwGSnAesAc5v1rk1yYIBa5MkzZFBQyHN+6XAx6vq7/vaZlRVXwW+O+D3rwbuqqoDVfUosAu4YMB1JUlzZNBQeCDJl+iFwl8lORV4/hi3eXWSbzSHl05r2pYAT/Qts6dpe4Ek65JsSbJlamrqGEuQJM1k0FC4ErgOeENV/RB4Mb1DSEfro8DPACuBvcCHm/aZ9jpqpi+oqvVVtaqqVi1atOgYSpAkHc7CQRaqqueT7APOSzLQOof5nn3T00k+BmxqZvcAy/oWXQo8eazbkSQdm4F+4JPcDPwa8DBwsGku4KtHs7Eki6tqbzP7DmD6yqSNwKeS3AK8ClgB3H803y1JOn6D/q//cuDcqjow6BcnuRN4C3BGkj3AB4G3JFlJL1AeA34HoKq2J7mbXug8B1xVVQdn+FpJUocGDYVHgJOAgUOhqq6Yofm2Iyx/E3DToN8vSZp7g4bCD4GtSTbTFwxV9d5OqpIkjcSgobCxeWk+W3ASyRFvL+nMK5csY++e3SPZtqTBDXr10YYkLwVeXVU7O65JXTn4LGdfu2n25Trw+M2XjWS7ko7OoGMf/QqwFfhiM78yiXsOkjRmBr157UZ6w078M0BVbQXO6aQiSdLIDBoKz1XV9w5pm/GOY0nS/DXoieZtSX4dWJBkBfBe4G+6K0uSNAqD7in8Hr1hrQ8AnwK+B7yvo5okSSMy6J7CuVV1A3BDl8VIkkZr0D2FW5J8M8l/S3J+pxVJkkZmoFCoqrfSG8doClif5KEk/6XLwiRJwzfongJV9Z2q+lPgd+nds/CBroqSJI3GoDevvSbJjUm2AX9G78qjpZ1WJkkaukFPNH8cuBO4qKp8+I0kjalBQ+HqqtrS35DkV6rqCx3UJEkakUHPKaxP8nPTM0muADzRLEljZtA9hXcC9yT5DeCXgN8CLuqsKknSSAw6dPYjSdYAnwOeoHdu4UddFiZJGr4jhkKSh/jJge9OBxYA9yWhqn6+y+I0Rkb0gB8f7iMdndn2FHwyiubGiB7w48N9pKNzxBPNVfX49AtYBrytmf7hbOtKkuafQW9e+yBwLXB903QS8ImuipIkjcag/9t/B/CrwA8AmhvYTu2qKEnSaAwaCj+uqqI56ZzklO5KkiSNyqChcHeS/wW8Isl/Bv4a+Fh3ZUmSRmHW+xTSu47w08DPAk8D5wIfqKp7O65NOn4juhQWvBxW89OsoVBVleRzVfULgEGg+WVEl8KCl8Nqfhr08NHfJnlDp5VIkkZu0LGP3gr8bpLH6F2BFHo7Ed7RLEljZLZhLl5dVbuBtw+pHknSCM22p/A54PVV9XiSz1TVvx9CTZKkEZntnEL/ZRs/3WUhkqTRmy0U6jDTs0pye5L9zXOdp9tOT3Jvkm8176f1fXZ9kl1Jdia5+Gi2JUmaG7OFwmuTPJ3kGeDnm+mnkzyT5OlZ1r0DuOSQtuuAzVW1AtjczJPkPGANcH6zzq1JFhxlXyRJx2m2UVIXVNXLq+rUqlrYTE/Pv3yWdb8KfPeQ5tXAhmZ6A3B5X/tdVXWgqh4FdgEXHG1nJEnHZ9jDX59VVXsBmvczm/Yl9J7oNm1P0yZJGqIT5ZkIM41DMOM5jCTrkmxJsmVqaqrjsiRpsgw7FPYlWQzQvO9v2vfQe4jPtKXAkzN9QVWtr6pVVbVq0aJFnRYrSZNm2KGwEVjbTK8FPt/XvibJyUnOAVYA9w+5NkmaeIMOc3HUktwJvAU4I8ke4IPAh+gNw30lsBt4F0BVbU9yN/Aw8BxwVVUd7Ko2SdLMOguFqrriMB9deJjlbwJu6qoeSdLsTpQTzZKkE4ChIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpNbCURcgja0FJ5Fk6Jt95ZJl7N2ze+jb1XgwFKSuHHyWs6/dNPTNPn7zZUPfpsbHSEIhyWPAM8BB4LmqWpXkdODTwHLgMeA/VNU/jaI+SZpUozyn8NaqWllVq5r564DNVbUC2NzMS5KG6EQ60bwa2NBMbwAuH10pkjSZRhUKBXwpyQNJ1jVtZ1XVXoDm/cyZVkyyLsmWJFumpqaGVK4kTYZRnWh+c1U9meRM4N4k3xx0xapaD6wHWLVqVXVVoCRNopHsKVTVk837fuAvgAuAfUkWAzTv+0dRmyRNsqGHQpJTkpw6PQ1cBGwDNgJrm8XWAp8fdm2SNOlGcfjoLOAvmpt6FgKfqqovJvk6cHeSK4HdwLtGUJs0/43opjnwxrlxMPRQqKpHgNfO0P6PwIXDrkcaOyO6aQ68cW4cnEiXpEqSRsxQkCS1DAVJUstQkCS1DAVJUstQkCS1fJ6CpLnjg4XmPUNB0tzxwULznoePJEktQ0GS1PLwkaT5z3MZc8ZQkDT/eS5jznj4SJLUck9Bko7VGA5TbihI0rEaw2HKPXwkSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKk1gkXCkkuSbIzya4k1426HkmaJCdUKCRZAPwP4O3AecAVSc4bbVWSNDlOqFAALgB2VdUjVfVj4C5g9YhrkqSJkaoadQ2tJO8ELqmq/9TMvxv4xaq6um+ZdcC6ZvZcYOdxbPIM4KnjWH++mbT+gn2eFPb56JxdVYtm+mDhsdfTiczQ9hOpVVXrgfVzsrFkS1Wtmovvmg8mrb9gnyeFfZ47J9rhoz3Asr75pcCTI6pFkibOiRYKXwdWJDknyYuBNcDGEdckSRPjhDp8VFXPJbka+CtgAXB7VW3vcJNzchhqHpm0/oJ9nhT2eY6cUCeaJUmjdaIdPpIkjZChIElqTWQoTMJQGkmWJflykh1Jtie5pmk/Pcm9Sb7VvJ826lrnUpIFSf4uyaZmfqz7C5DkFUnuSfLN5s/7TePc7yS/3/yd3pbkziQvGbf+Jrk9yf4k2/raDtvHJNc3v2c7k1x8PNueuFCYoKE0ngPeX1WvAd4IXNX08zpgc1WtADY38+PkGmBH3/y49xfgT4AvVtXPAq+l1/+x7HeSJcB7gVVV9a/oXZCyhvHr7x3AJYe0zdjH5t/1GuD8Zp1bm9+5YzJxocCEDKVRVXur6sFm+hl6PxRL6PV1Q7PYBuDykRTYgSRLgX8H/Hlf89j2FyDJy4F/A9wGUFU/rqp/Zrz7vRB4aZKFwE/Ru5dprPpbVV8FvntI8+H6uBq4q6oOVNWjwC56v3PHZBJDYQnwRN/8nqZtbCVZDrwOuA84q6r2Qi84gDNHWNpc+2PgD4Dn+9rGub8APw1MAR9vDpv9eZJTGNN+V9W3gT8CdgN7ge9V1ZcY0/4e4nB9nNPftEkMhVmH0hgnSV4GfAZ4X1U9Pep6upLkMmB/VT0w6lqGbCHweuCjVfU64AfM/0Mnh9UcR18NnAO8CjglyW+OtqqRm9PftEkMhYkZSiPJSfQC4ZNV9dmmeV+Sxc3ni4H9o6pvjr0Z+NUkj9E7JPi2JJ9gfPs7bQ+wp6rua+bvoRcS49rvfws8WlVTVfUs8FngXzO+/e13uD7O6W/aJIbCRAylkST0jjPvqKpb+j7aCKxtptcCnx92bV2oquuramlVLaf3Z/p/quo3GdP+Tquq7wBPJDm3aboQeJjx7fdu4I1Jfqr5O34hvfNl49rffofr40ZgTZKTk5wDrADuP+atVNXEvYBLgX8A/h9ww6jr6aiPv0RvF/IbwNbmdSnwL+hdufCt5v30UdfaQd/fAmxqpiehvyuBLc2f9eeA08a538B/Bb4JbAP+N3DyuPUXuJPeOZNn6e0JXHmkPgI3NL9nO4G3H8+2HeZCktSaxMNHkqTDMBQkSS1DQZLUMhQkSS1DQZLUMhQkIMkNzcib30iyNckvJvlKkk4fBp/kPUleNcBydyR5Z5e1SHCCPY5TGoUkbwIuA15fVQeSnAG8eEibfw+96+3H8q56zT/uKUiwGHiqqg4AVNVTVfUTP9JJvt83/c4kdzTTdyT5aPPsikeS/HIzFv6O6WWm10/y4SQPJtmcZFHzP/9VwCebvZOXJvlAkq83zwpY39y1Kw2NoSDBl4BlSf4hya1Jfvko1z8NeBvw+8AXgI/QG9v+55KsbJY5BXiwql4P/F/gg1V1D707kX+jqlZW1Y+AP6uqN1TvWQEvpbcHIw2NoaCJV1XfB34BWEdvGOpPJ3nPUXzFF6o3NMBDwL6qeqiqnge2A8ubZZ4HPt1Mf4LeMCQzeWuS+5I8RC9ozj+avkjHy3MKElBVB4GvAF9pfpDXHrpI3/RLDvnsQPP+fN/09Pzh/o29YHyZJC8BbqX3VLEnktw4w7akTrmnoImX5NwkK/qaVgKPH7LYviSvSfIi4B3HsJkXAdNXD/068LVm+hng1GZ6OgCeap6D4dVGGjr3FCR4GfDfk7yC3rOtd9E7lHRP3zLXAZvoPeFqW7PO0fgBcH6SB4DvAb/WtN8B/M8kPwLeBHyM3mGox+gN8y4NlaOkSkOQ5PtVdbRBIg2dh48kSS33FCRJLfcUJEktQ0GS1DIUJEktQ0GS1DIUJEmt/w/TOWCuAokPEwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.hist(histlist, bins=10, range=(0,100), edgecolor = 'black')\n", "\n", "plt.xlabel(\"Slumptal\")\n", "plt.ylabel(\"Frekvens\")\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Steget vidare" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nu känner du till de viktigaste visuella verktygen som finns till ditt förfogande när du använder Python. Jupyter Notebooks är dokument som lämpar sig bra för att växla förklarande texter med programmering eller beräkningar, och är därför bra att använda till labbrapporter och liknande arbeten.\n", "\n", "Om du vill göra fler övningar med statistik- och datahantering hittar du sådana i vårt material. Om du vill öva på egen hand kan du söka data från webbsidorna som nämns på vår hemsida.\n", "\n", "Lycka till!" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 4 }